如圖,在平面直角坐標(biāo)系xOy中,矩形OEFG的頂點(diǎn)F坐標(biāo)為(4,2),OG邊與y軸重合。將矩形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)F落在y軸的點(diǎn)N處,得到矩形OMNP,OM
與GF交于點(diǎn)A.
1.判斷△OGA和△NPO是否相似,并說(shuō)明理由;
2.求過(guò)點(diǎn)A的反比例函數(shù)解析式;
3.若(2)中求出的反比例函數(shù)的圖象與EF交于B點(diǎn), 請(qǐng)?zhí)剿鳎褐本AB與OM的位置關(guān)系,并說(shuō)明理由.
4.在GF所在直線上,是否存在一點(diǎn)Q,使△AOQ為等腰三角形.若存在,請(qǐng)直接寫(xiě)出
所有滿足要求的Q點(diǎn)坐標(biāo).
1.∵∠OGA=∠M=90°,
∠GOA=∠MON
∴△OGA∽△OMN;
2.∵AG:OP=OG:NP,∵OP=OG=2、PN=OM=OE=4,
∴AG=1
∴A(1,2) ………………3分
∴
3.AB⊥ OM ………………5分
代入得 B(4,), ………………6
∵AG:BF=OG:AF=2:3,∠AGO=∠BFA=900
△OGA∽△AFB ………………7分
∴∠AOG=∠BAF ∵∠AOG+∠OAG=900
∴∠BAF+∠OAG=900
∴ ∠OAB=900
∴AB⊥OM ………………8分
(其它方法酌情給分)
4.Q (1+, 2) 或Q(1-,2) ………………9分
Q(-1,2) 或 Q(-1.5,2)
【解析】(1)根據(jù)兩個(gè)角對(duì)應(yīng)相等,即可證明兩個(gè)三角形相似;
(2)要求反比例函數(shù)的解析式,則需求得點(diǎn)A的坐標(biāo),即要求得AG的長(zhǎng),根據(jù)旋轉(zhuǎn)的兩個(gè)圖形全等的性質(zhì)以及相似三角形的對(duì)應(yīng)邊的比相等可以求解
(3)求出B點(diǎn)坐標(biāo),通過(guò)△OGA∽△AFB ,求得∠OAB=900,從而得出結(jié)論
(4)分別有四種情況符合條件:AQ=OA (由兩種情況),OQ=OA,QA=OQ
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com