【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①a+b+c<0;a﹣b+c>1;abc>0;4a﹣2b+c<0;c﹣a>1.其中所有正確結(jié)論的序號是_____

【答案】①②③⑤

【解析】試題解析:①當(dāng)x=1時,y=a+b+c<0,故①正確;

②當(dāng)x=1時,y=ab+c>1,故②正確;

③由拋物線的開口向下知a<0,與y軸的交點(diǎn)為在y軸的正半軸上,

c>0,對稱軸為 2a=b,

a、b同號,即b<0,

abc>0,故③正確;

④∵對稱軸為

∴點(diǎn)(0,1)的對稱點(diǎn)為(2,1),

∴當(dāng)x=2時,y=4a2b+c=1,故④錯誤;

⑤∵x=1,ab+c>1,b=2a,

ca>1,故⑤正確.

故答案為:①②③⑤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=4,AD=6,點(diǎn)P是邊BC上的動點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別為E、F,要使折痕始終與邊ABAD有交點(diǎn),則BP的取值范圍是_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式: ;;;……

根據(jù)上面等式反映的規(guī)律,解答下列問題:

1)請根據(jù)上述等式的特征,在括號內(nèi)填上同一個實(shí)數(shù): -5=

2)小明將上述等式的特征用字母表示為:、為任意實(shí)數(shù)).

①小明和同學(xué)討論后發(fā)現(xiàn):、的取值范圍不能是任意實(shí)數(shù).請你直接寫出、不能取哪些實(shí)數(shù).

②是否存在、兩個實(shí)數(shù)都是整數(shù)的情況?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD頂點(diǎn)A(0,1),B(1,1);一拋物線y=ax2+bx+c過點(diǎn)M(﹣1,0)且頂點(diǎn)在正方形ABCD內(nèi)部(包括在正方形的邊上),則a的取值范圍是( 。

A. ﹣2≤a≤﹣1 B. ﹣2≤a≤﹣ C. ﹣1≤a≤﹣ D. ﹣1≤a≤﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)了一次函數(shù)圖像后,張明、李麗和王林三位同學(xué)在趙老師的指導(dǎo)下,對一次函數(shù)進(jìn)行了探究學(xué)習(xí),請根據(jù)他們的對話解答問題.

(1)張明:當(dāng),我能求出直線與軸的交點(diǎn)坐標(biāo)為 ;

李麗:當(dāng),我能求出直線與坐標(biāo)軸圍成的三角形的面積為 ;

(2)王林:根據(jù)你們的探究,我發(fā)現(xiàn)無論取何值,直線總是經(jīng)過一個固定的點(diǎn),請求出這個定點(diǎn)的坐標(biāo).

(3)趙老師:我來考考你們,如果點(diǎn)的坐標(biāo)為,該點(diǎn)到直線的距離存在最大值嗎?若存在,試求出該最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家銷售一款商品,進(jìn)價每件80元,售價每件145元,每天銷售40件,每銷售一件需支付給商場管理費(fèi)5元,未來一個月30天計(jì)算,這款商品將開展每天降價1的促銷活動,即從第一天開始每天的單價均比前一天降低1元,通過市場調(diào)查發(fā)現(xiàn),該商品單價每降1元,每天銷售量增加2件,設(shè)第xx為整數(shù)的銷售量為y件.

直接寫出yx的函數(shù)關(guān)系式;

設(shè)第x天的利潤為w元,試求出wx之間的函數(shù)關(guān)系式,并求出哪一天的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線:y=ax2+bx+c(a<0)經(jīng)過A(2,4)、B(﹣1,1)兩點(diǎn),頂點(diǎn)坐標(biāo)為(h,k),則下列正確結(jié)論的序號是( 。

①b>1;②c>2;③h>;④k≤1.

A. ①②③④ B. ①②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是矩形,延長AB至點(diǎn)F,連結(jié)CF,使得CF=AF,過點(diǎn)AAEFC于點(diǎn)E.

1)求證:AD=AE.

2)連結(jié)CA,若∠DCA=70°,求∠CAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購進(jìn)一批干果分裝成營養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費(fèi)用80元.

(1)請直接寫出yx之間的函數(shù)關(guān)系式;

(2)如果每天獲得160元的利潤,銷售單價為多少元?

(3)設(shè)每天的利潤為w元,當(dāng)銷售單價定為多少元時,每天的利潤最大?最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案