11.如圖,在平面直角坐標系中,點O為坐標原點,直線y=2x+b分別交x,y軸于點A、C,拋物線y=ax2+x+4經(jīng)過A、C兩點,交x軸于另外一點B.
(1)求拋物線的解析式;
(2)點P在第一象限內(nèi)拋物線上,連接PB、PC,作平行四邊形PBDC,DE⊥y軸于點E,設點P 的橫坐標為t,線段DE的長度為d,求d與t之間的函數(shù)關系式.
(3)在(2)的條件下,延長BD交直線AC與點F,連接OF,若∠AFO=∠BFO,求點P的坐標.

分析 (1)利用待定系數(shù)法即可解決問題.
(2)如圖1中,設P(t,-$\frac{1}{2}$x2+x+4),D(x,y).根據(jù)平行四邊形的性質(zhì)對角線互相平分,利用中點坐標公式,列出方程即可解決問題.
(3)如圖2中,作OM⊥AC于M,ON⊥BF于N,NE⊥OB于E.先求出點N的坐標,求出直線NB的解析式,再求出直線PC的解析式,解方程組即可解決問題.

解答 解:(1)對于拋物線y=ax2+x+4,令x=0,得y=4,
∴C(0,4),把C(0,4),代入y=2x+b中,得b=4,
∴直線解析式為y=2x+4,令Y=0,得x=-2,
∴A(-2,0),把A(-2,0)代入y=ax2+x+4,得a=-$\frac{1}{2}$,
∴拋物線的解析式為y=-$\frac{1}{2}$x2+x+4.

(2)如圖1中,設P(t,-$\frac{1}{2}$x2+x+4),D(x,y).

∵C(0,4),B(4,0),四邊形CPBD是平行四邊形,
∴$\frac{t+x}{2}$=$\frac{0+4}{2}$,x=4-t,
∴d=DE=x=4-t(0<t<4).

(3)如圖2中,作OM⊥AC于M,ON⊥BF于N,NE⊥OB于E.

∵∠OFA=∠OFB,OM⊥FC,ON⊥FB,
∴OM=ON,
∵$\frac{1}{2}$•OA•OC=$\frac{1}{2}$•AC•OM,OA=2,OC=4,AC=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,
∴ON=OM=$\frac{4\sqrt{5}}{5}$,
∵BN=$\sqrt{O{B}^{2}-O{N}^{2}}$=$\sqrt{16-\frac{16}{5}}$=$\frac{8\sqrt{5}}{5}$,
∵$\frac{1}{2}$•ON•BN=$\frac{1}{2}$•OB•EN,
∴EN=$\frac{2}{5}$,OE=$\sqrt{O{N}^{2}-E{N}^{2}}$=$\frac{1}{5}$,
∴N($\frac{1}{5}$,-$\frac{2}{5}$),
設直線BN的解析式為y=kx+b,則有$\left\{\begin{array}{l}{4k+b=0}\\{\frac{1}{5}k+b=-\frac{2}{5}}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=\frac{2}{19}}\\{b=-\frac{8}{19}}\end{array}\right.$,
∵PC∥BN,
∴直線PC的解析式為y=$\frac{2}{19}$x+4,
由$\left\{\begin{array}{l}{y=\frac{2}{19}x+4}\\{y=-\frac{1}{2}{x}^{2}+x+4}\end{array}\right.$解得$\left\{\begin{array}{l}{x=0}\\{y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=\frac{34}{19}}\\{y=\frac{1512}{361}}\end{array}\right.$,
∴點P坐標為($\frac{34}{19}$,$\frac{1512}{361}$).

點評 本題考查二次函數(shù)綜合題、一次函數(shù)的應用、平行四邊形的性質(zhì)、角平分線的性質(zhì)定理、勾股定理等知識,解題的關鍵是靈活運用所學知識,學會利用面積分求線段的長,學會用轉化的思想思考問題,求出點N的坐標是本題的突破點,屬于中考壓軸題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

1.如圖,將長和寬分別是a,b的長方形紙片的四個角都剪去一個邊長為x的正方形.用含a,b,x的代數(shù)式表示紙片剩余部分的面積為ab-4x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.(1)已知:a+b=3,ab=2.求a2+b2的值.
(2)已知:a-b=1,a2+b2=4,求ab的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.計算:$\sqrt{16}+|{1-\sqrt{3}}|+\root{3}{-27}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

6.如圖,直線AB、CD相交于點O,OE平分∠BOD.
①若∠AOC=68°,∠DOF=90°,求∠EOF的度數(shù);
②若OF平分∠COE,∠BOF=15°,若設∠AOE=x°,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.解不等式組:$\left\{\begin{array}{l}{3x+4>5x-2}\\{x≥\frac{1}{3}x-\frac{4}{3}}\end{array}\right.$,并把它的解集表示在數(shù)軸上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

12.計算:$\sqrt{8}$-$\sqrt{2}$=$\sqrt{2}$,$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

9.若$\frac{a}$有意義,m≠0,則下面結論中成立的是( 。
A.$\frac{b+m}{a+m}=\frac{a}$B.$\frac{b-m}{a-m}=\frac{a}$C.$\frac{-bm}{-am}=\frac{a}$D.$\frac{mb}{a}=\frac{a}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

10.如圖,要設計一幅寬20cm,長30cm的圖案,其中有兩橫兩豎的彩條,且橫、豎彩條的寬度相等,如果要使彩條所占面積為184cm2,應如何設計彩條的寬度?

查看答案和解析>>

同步練習冊答案