【題目】已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長;
(2)求圖中陰影部分的面積.
科目:初中數學 來源: 題型:
【題目】如圖,正方形AOCB的邊長為4,反比例函數的圖象過點E(3,4).
(1)求反比例函數的解析式;
(2)反比例函數的圖象與線段BC交于點D,直線過點D,與線段AB相交于點F,求點F的坐標;
(3)連接OF,OE,探究∠AOF與∠EOC的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】
(1) 填空:AB=_________,BC= ;
(2) 若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒3個單位長度和7個單位長度的速度向右運動.設運動時間為t秒,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB,用含t的代數式表示BC和AB的長,并探索:BC-AB的值是否隨著時間t的變化而改變?請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標系中,已知P(a, b)是△ABC的邊AC上一點,△ABC經平移后P點的對應點P1(a+3,b-1),則下列平移過程正確的是( )
A. 先向左平移3個單位,再向下平移1個單位 B. 先向右平移3個單位,再向下平移1個單位
C. 先向左平移3個單位,再向上平移1個單位 D. 先向右平移3個單位,再向上平移1個單位
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】黃石市2011年6月份某日一天的溫差為11℃,最高氣溫為t℃,則最低氣溫可表示為( )
A. (11+t)℃ B. (11﹣t)℃ C. (t﹣11)℃ D. (﹣t﹣11)℃
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題提出:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
問題探究:不妨假設能搭成種不同的等腰三角形,為探究之間的關系,我們可以從特殊入手,通過試驗、觀察、類比,最后歸納、猜測得出結論.
探究一:
(1)用3根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
此時,顯然能搭成一種等腰三角形。所以,當時,
(2)用4根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形
所以,當時,
(3)用5根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形
所以,當時,
(4)用6根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?
若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形
若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形
所以,當時,
綜上所述,可得表①
3 | 4] | 5 | 6 | |
1 | 0 | 1 | 1 |
探究二:
(1)用7根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?
(仿照上述探究方法,寫出解答過程,并把結果填在表②中)
(2)分別用8根、9根、10根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三
角形?(只需把結果填在表②中)
7 | 8 | 9 | 10 | |
你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進行探究,……
解決問題:用根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
(設分別等于、、、,其中是整數,把結果填在表③中)
問題應用:用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(要求寫出解答過程)其中面積最大的等腰三角形每個腰用了__________________根木棒。(只填結果)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com