【題目】已知:如圖,反比例函數的圖象與一次函數的圖象交于點、點.
(1)求一次函數和反比例函數的解析式;
(2)求的面積;
(3)直接寫出一次函數值大于反比例函數值的自變量的取值范圍.
【答案】(1),y=x+3;(2)S△AOB=; (3)x>1 ,12, -4 <a<0
【解析】
(1)把A的坐標代入反比例函數解析式求出A的坐標,把A的坐標代入一次函數解析式求出即可;
(2)求出直線AB與y軸的交點C的坐標,分別求出△ACO和△BOC的面積,然后相加即可;
(3)根據A、B的坐標結合圖象即可得出答案.
(1)把A點(1,4)分別代入反比例函數解析式,一次函數解析式
y=kx+b,得,k=1×4,1+b=4,解得,k=4,b=3,
所以反比例函數解析式是,一次函數解析式y=x+3,
(2)如圖
當X=-4時,y=-1,
∴B(-4,-1),
當y=0時,x+3=0,x=-3,
∴C(-3,0),
∴S△AOB= S△AOC+ S△BOC=
故答案為:
(3)∵B(-4,-1),A(1,4),
∴根據圖象可知:當x>1或-4<x<0時,一次函數值大于反比例函數值.
科目:初中數學 來源: 題型:
【題目】如圖,過正方形ABCD的頂點D作DE∥AC交BC的延長線于點E.
(1)判斷四邊形ACED的形狀,并說明理由;
(2)若BD=8cm,求線段BE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,點E為CD的中點,點F在BC上,且CF=2BF,連接AE,AF,若AF=,AE=7,tan∠EAF=,則線段BF的長為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點,,,點與關于軸對稱.
(1)寫出點所在直線的函數解析式;
(2)連接,若線段能構成三角形,求的取值范圍;
(3)若直線把四邊形的面積分成相等的兩部分,試求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】是某汽車行駛的路程S(km)與時間t(min)的函數關系圖.觀察圖中所提供的信息,解答下列問題:
(1)汽車在前9分鐘內的平均速度是多少?
(2)汽車在中途停了多長時間?
(3)當16≤t≤30時,求S與t的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數的圖象與正比例函數的圖象交于點A(m,4).
(1)求m、n的值;
(2)設一次函數的圖象與x軸交于點B,求△AOB的面積;
(3)直接寫出使函數的值小于函數的值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某檢修小組從A地出發(fā),在東西方向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負,一天中七次行駛紀錄如下.(單位:km)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
-4 | +8 | -9 | +8 | +6 | -5 | -2 |
(1)求收工時距A地多遠?
(2)若每km耗油0.4升,問一天共耗油多少升?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點E,過點E作BE的垂線交AB于點F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com