【題目】某校學(xué)生會向全校2400名學(xué)生發(fā)起了愛心捐款活動,為了解捐款情況,學(xué)生會隨機調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計圖1和圖2,請根據(jù)相關(guān)信息,解答系列問題:

1)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為 人,圖1m的值是 ;

2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)和中位數(shù);

3)根據(jù)樣本數(shù)據(jù),估計該校本次活動捐款金額為10元的學(xué)生人數(shù).

【答案】15032;(216,15;(3768.

【解析】

1)根據(jù)題意由5元的人數(shù)及其所占百分比可得抽樣調(diào)查的學(xué)生人數(shù),用10元人數(shù)除以抽樣調(diào)查的學(xué)生人數(shù)可得m的值;

2)由題意根據(jù)統(tǒng)計圖可以分別得到本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)和中位數(shù);

3)由題意根據(jù)全??cè)藬?shù)捐款金額為10元的學(xué)生人數(shù)所占乘以抽樣調(diào)查的學(xué)生人數(shù)的比例,即可估計該校本次活動捐款金額為10元的學(xué)生人數(shù).

解:(1)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為4÷8%=50人,

.

故答案為:50;32.

2)本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)是:(元);

本次調(diào)查獲取的樣本數(shù)據(jù)的中位數(shù)是:15.

3)估計該校本次活動捐款金額為10元的學(xué)生人數(shù)為2400×32%=768人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表,

x

-3

-2

-1

0

1

2

3

4

5

y

12

5

0

-3

-4

-3

0

5

12

下列四個結(jié)論:

(1)二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;

(2)拋物線與y軸交點為(0,-3);

(3)二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;

(4)本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.

其中正確結(jié)論的個數(shù)是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系,已知一次函數(shù)的圖象經(jīng)過點A10),與反比例函數(shù)0)的圖象相交于點Bm,1).

1m的值和一次函數(shù)的解析式;

2)結(jié)合圖象直接寫出當(dāng)0不等式的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,直徑CD⊥弦ABMAE⊥BDE,交CDN,連AC

1)求證:ACAN

2)若OM∶OC3∶5,AB5,求⊙O的半徑;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°B=30°,以A為圓心,任意長為半徑畫弧分別交ABAC于點MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是

ADBAC的平分線;②∠ADC=60°;DAB的中垂線上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國魏晉時期數(shù)學(xué)家劉徽編撰的最早一部測量數(shù)學(xué)著作《海島算經(jīng)》中有一題今有望海島,立兩表齊高三丈前后相去千步,令后表與前表參相直.從前表卻行一百二十三步人目著地,取望島峰,與表末參合.從后表卻行一百二十七步,人目著地,取望島峰亦與表末參合.問島高幾何?

譯文今要測量海島上一座山峰AH的高度B處和D處樹立標(biāo)桿BCDE,標(biāo)桿的高都是3,BD兩處相隔1000步(1=101=6尺),并且AH,CBDE在同一平面內(nèi).從標(biāo)桿BC后退123步的F處可以看到頂峰A和標(biāo)桿頂端C在同一直線上;從標(biāo)桿ED后退127步的G處可以看到頂峰A和標(biāo)桿頂端E在同一直線上.則山峰AH的高度是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,ABC的頂點均在格點上,B的坐標(biāo)為(1,0).

1)在圖1中畫出△ABC關(guān)于y軸對稱的△A1B1C1直接寫出點C的對應(yīng)點C1的坐標(biāo)

2)在圖2,以點O為位似中心,將△ABC放大使放大后的△A2B2C2與△ABC的對應(yīng)邊的比為21(畫出一種即可).直接寫出點C的對應(yīng)點C2的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解

如圖 a,在ABC 中,D BC 的中點.如果用 SABC 表示ABC 的面積,則由等底等高的三角形的面積相等,可得.同理,如圖 b,在 ABC 中,D、E BC 的三等分點,可得

結(jié)論應(yīng)用

已知ABC 的面積為 42,請利用上面的結(jié)論解決下列問題:

(1)如圖 1,若 D、E 分別是 AB、AC 的中點,CD BE交于點 F,則DBF 的面積為 ;

類比推廣

(2)如圖 2,若 DE AB 的三等分點,FG AC 三等分點,CD 分別交 BF、BG MN,CE 分別交 BF、BG PQ,求BEP 的面積;

(3)如圖2,問題(2)中的條件不變,求四邊形EPMD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】動手操作:
如圖,已知ABCD,A為圓心,小于AC長為半徑作圓弧,分別交AB,ACE,F兩點,再分別以點E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M.
問題解決:

(1)若∠ACD=78°,求∠MAB的度數(shù);
(2)CNAM,垂足為點N,求證:CAN≌△CMN.
實驗探究:
(3)直接寫出當(dāng)∠CAB的度數(shù)為多少時?CAM分別為等邊三角形和等腰直角三角形.

查看答案和解析>>

同步練習(xí)冊答案