【題目】平面直角坐標(biāo)系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三點,D(1,m)是一個動點,當(dāng)△ACD的周長最小時,△ABD的面積為( )
A.
B.
C.
D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣2,4),B(4,2),C(2,﹣1)
(1)作△ABC關(guān)于x軸的對稱圖形△A1B1C1 , 寫出點C關(guān)于x軸的對稱點C1的坐標(biāo);
(2)P為x軸上一點,請在圖中畫出使△PAB的周長最小時的點P并直接寫出此時點P的坐標(biāo)(保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于正比例函數(shù)y=2x的圖象,下列敘述錯誤的是( 。
A. 點(﹣1,﹣2)在這個圖象上 B. 函數(shù)值y隨自變量x的增大而減小
C. 圖象關(guān)于原點對稱 D. 圖象經(jīng)過一、三象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進價和售價如下表所示.
A | B | |
進價(萬元/套) | 1.5 | 1.2 |
售價(萬元/套) | 1.65 | 1.4 |
設(shè)商場計劃購進兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元(毛利潤=(售價-進價)×銷售量).
(1)該商場計劃購進A,B兩種品牌的教學(xué)設(shè)備各多少套?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進數(shù)量,增加B種設(shè)備的購進數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少的數(shù)量的1.5倍.若用于購進這兩種教學(xué)設(shè)備的總資金不超過69萬元,問A種設(shè)備購進數(shù)量至多減少多少套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大型企業(yè)為了保護環(huán)境,準(zhǔn)備購買A、B兩種型號的污水處理設(shè)備共8臺,用于同時治理不同成分的污水,若購進A型2臺、B型3臺需54萬元,購買A型4臺、B型2臺需68萬元.
(1)求出A型、B型污水處理設(shè)備的單價;
(2)經(jīng)核實,一臺A型設(shè)備一個月可處理污水220噸,一臺B型設(shè)備一個月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1 565噸,請你為該企業(yè)設(shè)計一種最省錢的購買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD= AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結(jié)論:①∠AED=∠CED;②AB=HF,③BH=HF;④BC﹣CF=2HE;⑤OE=OD;其中正確結(jié)論的序號是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.
某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.
(1)作AD⊥BC于D,設(shè)BD = x,用含x的代數(shù)式表示CD;
(2)根據(jù)勾股定理,利用AD作為“橋梁”,建立方程模型,求出x;
(3)利用勾股定理求出AD的長,再計算三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:等邊△ABC的邊長為4,點P在線段AB上,點D在線段AC上,且△PDE為等邊三角形,當(dāng)點P與點B重合時(如圖1),AD+AE的值為 ;
[類比探究]在上面的問題中,如果把點P沿BA方向移動,使PB=1,其余條件不變(如圖2),AD+AE的值是多少?請寫出你的計算過程;
[拓展遷移]如圖3,△ABC中,AB=BC,∠ABC=a,點P在線段BA延長線上,點D在線段CA延長線上,在△PDE中,PD=PE,∠DPE=a,設(shè)AP=m,則線段AD、AE有怎樣的等量關(guān)系?請用含m,a的式子直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF=,求BC和BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com