翔宇中學的鉛球場如圖所示,已知扇形AOB的面積是36平方米,弧AB的長度為9米,那么半徑OA=                
8米
因為扇形的面積等于弧長與半徑乘積的一半
36="1/" 2 ×9OA,
故OA=8m.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙的半徑為3cm,⊙的半徑為4cm,兩圓的圓心距為1cm,則這兩圓的位置關(guān)系是()
A.相交B.內(nèi)含C.內(nèi)切D.外切

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線l與⊙O相交于A,B兩點,且與半徑OC垂直,垂足為H,已知AB=16厘米,

(1) 求⊙O的半徑;
(2) 如果要將直線l向下平移到與⊙O相切的位置,
平移的距離應是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線L:y=-2x-8分別與x軸、y軸相交于A、B兩點,點P(0,k)是y軸的負半軸上的一個動點,以P為圓心,3為半徑作⊙P.
小題1:連結(jié)PA,若∠PAB=∠PBA,試判斷⊙P與X軸的位置關(guān)系,并說明理由;
小題2:當K為何值時,以⊙P與直線L的兩個交點和圓心P為頂點的三角形是正三角形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知圓錐的側(cè)面展開圖是一個半圓,則這個圓錐的母線長與底面半徑長的比是_.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:正方形ABCD的邊長為2,⊙O交正方形ABCD的對角線AC所在直線于點T,連結(jié)TO交⊙O于點S,連結(jié)AS.

小題1:如圖1,當⊙O經(jīng)過A、D兩點且圓心O在正方形ABCD內(nèi)部時,連結(jié)DT、DS.
①試判斷線段DT、DS的數(shù)量關(guān)系和位置關(guān)系;   ②求AS+AT的值;
小題2:如圖2,當⊙O經(jīng)過A、D兩點且圓心O在正方形ABCD外部時,連結(jié)DT、DS.求AS-AT的值;
小題3:如圖3,延長DA到點E,使AE=AD,當⊙O經(jīng)過A、E兩點時,連結(jié)ET、ES.
根據(jù)(1)、(2)計算,通過觀察、分析,對線段AS、AT的數(shù)量關(guān)系提出問題并解答.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

某花園內(nèi)有一塊五邊形的空地(如圖),為了美化環(huán)境,現(xiàn)計劃以五邊形各頂點為圓心,2m長為半徑的扇形區(qū)域(陰影部分)種上花草,那么陰影部分的總面積是(   )
A.6πm2B.5πm2C.4πm2D.3πm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,的直徑,點上,.動點在弦上,則可能為_________度(寫出一個符合條件的度數(shù)即可).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC內(nèi)接圓于⊙O,∠B=30°,AC=2cm,⊙O半徑的長為        cm.

查看答案和解析>>

同步練習冊答案