(2010•福州)如圖,直線(xiàn),點(diǎn)A1坐標(biāo)為(1,0),過(guò)點(diǎn)A1作x的垂線(xiàn)交直線(xiàn)于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A2;再過(guò)點(diǎn)A2x的垂線(xiàn)交直線(xiàn)于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A5的坐標(biāo)為(    ,    ).
【答案】分析:∵點(diǎn)A1坐標(biāo)為(1,0),且B1A1⊥x軸,∴B1的橫坐標(biāo)為1,將其橫坐標(biāo)代入直線(xiàn)解析式就可以求出B1的坐標(biāo),就可以求出A1B1的值,OA1的值,根據(jù)銳角三角函數(shù)值就可以求出∠x(chóng)OB3的度數(shù),從而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,從而尋找出點(diǎn)A2、A3…的坐標(biāo)規(guī)律,最后求出A5的坐標(biāo).
解答:解:∵點(diǎn)A1坐標(biāo)為(1,0),
∴OA1=1
∵B1A1⊥x軸
∴點(diǎn)B1的橫坐標(biāo)為1,且點(diǎn)B1在直線(xiàn)上
∴y=
∴B1(1,
∴A1B1=
在Rt△A1B1O中由勾股定理,得
OB1=2
∴sin∠OB1A1=
∴∠OB1A1=30°
∴∠OB1A1=∠OB2A2=∠OB3A3=…=∠OBnAn=30°
∵OA2=OB1=2,A2(2,0)
在Rt△OB2A2中,OB2=2OA2=4
∴OA3=4,A3(4,0)同理,得
OA4=8,…,0An=2n-1,An(2n-1,0)
∴OA5=25-1=16
∴A5(16,0).
故答案為:(16,0).
點(diǎn)評(píng):本題是一道一次函數(shù)的綜合試題,也是一道規(guī)律試題,考查了直角三角形的性質(zhì),特別是30°所對(duì)的直角邊等于斜邊的一半的運(yùn)用,點(diǎn)的坐標(biāo)與函數(shù)圖象的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•福州)如圖1,在平面直角坐標(biāo)系中,點(diǎn)B在直線(xiàn)y=2x上,過(guò)點(diǎn)B作x軸的垂線(xiàn),垂足為A,OA=5.若拋物線(xiàn)過(guò)點(diǎn)O、A兩點(diǎn).
(1)求該拋物線(xiàn)的解析式;
(2)若A點(diǎn)關(guān)于直線(xiàn)y=2x的對(duì)稱(chēng)點(diǎn)為C,判斷點(diǎn)C是否在該拋物線(xiàn)上,并說(shuō)明理由;
(3)如圖2,在(2)的條件下,⊙O1是以BC為直徑的圓.過(guò)原點(diǎn)O作O1的切線(xiàn)OP,P為切點(diǎn)(P與點(diǎn)C不重合),拋物線(xiàn)上是否存在點(diǎn)Q,使得以PQ為直徑的圓與O1相切?若存在,求出點(diǎn)Q的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

(2010•福州)如圖,直線(xiàn),點(diǎn)A1坐標(biāo)為(1,0),過(guò)點(diǎn)A1作x的垂線(xiàn)交直線(xiàn)于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A2;再過(guò)點(diǎn)A2x的垂線(xiàn)交直線(xiàn)于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A5的坐標(biāo)為(        ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省福州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•福州)如圖1,在平面直角坐標(biāo)系中,點(diǎn)B在直線(xiàn)y=2x上,過(guò)點(diǎn)B作x軸的垂線(xiàn),垂足為A,OA=5.若拋物線(xiàn)過(guò)點(diǎn)O、A兩點(diǎn).
(1)求該拋物線(xiàn)的解析式;
(2)若A點(diǎn)關(guān)于直線(xiàn)y=2x的對(duì)稱(chēng)點(diǎn)為C,判斷點(diǎn)C是否在該拋物線(xiàn)上,并說(shuō)明理由;
(3)如圖2,在(2)的條件下,⊙O1是以BC為直徑的圓.過(guò)原點(diǎn)O作O1的切線(xiàn)OP,P為切點(diǎn)(P與點(diǎn)C不重合),拋物線(xiàn)上是否存在點(diǎn)Q,使得以PQ為直徑的圓與O1相切?若存在,求出點(diǎn)Q的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年福建省福州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•福州)如圖,直線(xiàn),點(diǎn)A1坐標(biāo)為(1,0),過(guò)點(diǎn)A1作x的垂線(xiàn)交直線(xiàn)于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A2;再過(guò)點(diǎn)A2x的垂線(xiàn)交直線(xiàn)于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A5的坐標(biāo)為(        ).

查看答案和解析>>

同步練習(xí)冊(cè)答案