【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+ 與x軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng).
(1)求拋物線的解析式,并直接寫(xiě)出點(diǎn)D的坐標(biāo);
(2)如圖1,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿A→B勻速運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng).以AP為邊作等邊△APQ(點(diǎn)Q在x軸上方).設(shè)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,△APQ與四邊形AOCD重疊部分的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式;
(3)如圖2,連接AC,在第二象限內(nèi)存在點(diǎn)M,使得以M、O、A為頂點(diǎn)的三角形與△AOC相似.請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)M坐標(biāo).
【答案】
(1)解:∵拋物線y=ax2+bx+ 經(jīng)過(guò)A(﹣3,0),B(1,0)兩點(diǎn),
∴ ,
解得 ,
∴拋物線解析式為y=﹣ x2﹣ x+ ;
則D點(diǎn)坐標(biāo)為(﹣2, )
(2)解:∵點(diǎn)D與A橫坐標(biāo)相差1,縱坐標(biāo)之差為 ,則tan∠DAP= ,
∴∠DAP=60°,
又∵△APQ為等邊三角形,
∴點(diǎn)Q始終在直線AD上運(yùn)動(dòng),當(dāng)點(diǎn)Q與D重合時(shí),由等邊三角形的性質(zhì)可知:AP=AD= .
①當(dāng)0≤t≤2時(shí),P在線段AO上,此時(shí)△APQ的面積即是△APQ與四邊形AOCD的重疊面積.
AP=t,
∵∠QAP=60°,
∴點(diǎn)Q的縱坐標(biāo)為tsin60°= t,
∴S= × t×t= t2.
②當(dāng)2<t≤3時(shí),如圖:
此時(shí)點(diǎn)Q在AD的延長(zhǎng)線上,點(diǎn)P在OA上,
設(shè)QP與DC交于點(diǎn)H,
∵DC∥AP,
∴∠QDH=∠QAP=∠QHD=∠QPA=60°,
∴△QDH是等邊三角形,
∴S=S△QAP﹣S△QDH,
∵QA=t,
∴S△QAP= t2.
∵QD=t﹣2,
∴S△QDH= (t﹣2)2,
∴S= t2﹣ (t﹣2)2= ﹣ .
③當(dāng)3<t≤4時(shí),如圖:
此時(shí)點(diǎn)Q在AD的延長(zhǎng)線上,點(diǎn)P在線段OB上,
設(shè)QP與DC交于點(diǎn)E,與OC交于點(diǎn)F,過(guò)點(diǎn)Q作AP的垂涎,垂足為G,
∵OP=t﹣3,∠FPO=60°,
∴OF=OPtan60°= t﹣3),
∴S△FOP= × (t﹣3)(t﹣3)= (t﹣3)2,
∵S=S△QAP﹣S△QDE﹣S△FOP,S△QAP﹣S△QDE= t﹣ .
∴S= t﹣ ﹣ (t﹣3)2= t2+4 t﹣ .
綜上所述,S與t之間的函數(shù)關(guān)系式為
(3)解:∵OC= ,OA=3,OA⊥OC,則△OAC是含30°的直角三角形.
①當(dāng)△AMO以∠AMO為直角的直角三角形時(shí);如圖,過(guò)點(diǎn)M2作AO的垂線,垂足為N,
∵∠M2AO=30°,AO=3,
∴M2O= ,
又∵∠OM2N=M2AO=30°,
∴ON= OM2= ,M2N= ON ,
∴M2的坐標(biāo)為(﹣ , ).
同理可得M1的坐標(biāo)為(﹣ , ).
②當(dāng)△AMO以∠OAM為直角的直角三角形時(shí);如圖:
∵以M、O、A為頂點(diǎn)的三角形與△OAC相似,
∴ ,或 = ,
∵OA=3,
∴AM= 或AM= ,
∵AM⊥OA,且點(diǎn)M在第二象限,
∴點(diǎn)M的坐標(biāo)為(﹣3, )或(﹣3,3 ).
綜上所述,符合條件的點(diǎn)M的所有可能的坐標(biāo)為(﹣3, ),(﹣3,3 ),( , ,(﹣ , ).
【解析】(1)把A、B兩點(diǎn)的坐標(biāo)代入拋物線解析式,求出拋物線的解析式,由拋物線與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于拋物線的對(duì)稱(chēng)軸對(duì)稱(chēng),由頂點(diǎn)式得到D點(diǎn)坐標(biāo);(2)由點(diǎn)D與A橫坐標(biāo)相差1,縱坐標(biāo)之差為 3 ,得到tan∠DAP= 3 ,∠DAP=60°,又△APQ為等邊三角形,得到點(diǎn)Q始終在直線AD上運(yùn)動(dòng),當(dāng)點(diǎn)Q與D重合時(shí),由等邊三角形的性質(zhì)和勾股定理求出:AP=AD的值;①當(dāng)0≤t≤2時(shí),P在線段AO上,此時(shí)△APQ的面積即是△APQ與四邊形AOCD的重疊面積;②當(dāng)2<t≤3時(shí),此時(shí)點(diǎn)Q在AD的延長(zhǎng)線上,點(diǎn)P在線段OB上,根據(jù)已知條件和三角形的面積公式,得到S與t之間的三種函數(shù)關(guān)系式;(3)根據(jù)已知可得△OAC是含30°的直角三角形,①當(dāng)△AMO以∠AMO為直角的直角三角形時(shí),根據(jù)在直角三角形中,30度角所對(duì)的邊是斜邊的一半,求出M2的坐標(biāo),同理可得M1的坐標(biāo);②當(dāng)△AMO以∠OAM為直角的直角三角形時(shí),以M、O、A為頂點(diǎn)的三角形與△OAC相似,得到比例,求出AM的值,得到點(diǎn)M的坐標(biāo);此題是綜合題,難度較大,計(jì)算和解方程時(shí)需認(rèn)真仔細(xì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市為了吸引顧客,設(shè)計(jì)了一種促銷(xiāo)活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、"10元”、“20元”、“30元”的字樣.規(guī)定:顧客在本超市一次性消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)小球(每一次摸出后不放回).某顧客剛好消費(fèi)200元,則該顧客所獲得購(gòu)物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)用36萬(wàn)元購(gòu)進(jìn)A、B兩種商品,銷(xiāo)售完后共獲利6萬(wàn)元,其進(jìn)價(jià)和售價(jià)如下表:
A | B | |
進(jìn)價(jià)(元/件) | 1200 | 1000 |
售價(jià)(元/件) | 1380 | 1200 |
(注:獲利=售價(jià)-進(jìn)價(jià))
(1) 該商場(chǎng)購(gòu)進(jìn)A、B兩種商品各多少件?
(2) 商場(chǎng)第二次以原進(jìn)價(jià)購(gòu)進(jìn)A、B兩種商品.購(gòu)進(jìn)B種商品的件數(shù)不變,而購(gòu)進(jìn)A種商品的件數(shù)是第一次的2倍,A種商品按原價(jià)出售,而B種商品打折銷(xiāo)售.若兩種商品銷(xiāo)售完畢,要使第二次經(jīng)營(yíng)活動(dòng)獲利不少于81600元,B種商品最低售價(jià)為每件多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的周長(zhǎng)為30cm,點(diǎn)D、E都在邊BC上,∠ABC的平分線垂直于AE,垂足為Q,∠ACB的平分線垂直于AD,垂足為P,若BC=11cm,則DE的長(zhǎng)為____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖所示
(1)、寫(xiě)出A、B、C三點(diǎn)的坐標(biāo)
(2)、求△ABC的面積
(3)、△ABC中任意一點(diǎn)P(x0,y0)經(jīng)平移后對(duì)應(yīng)點(diǎn)為P1(x0+4,y0-3),將△ABC作同樣的平移得到△A1B1C1,寫(xiě)出A1 、B1、C1的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】星期日早晨,小青從家出發(fā)勻速去森林公園溜冰,小青出發(fā)一段時(shí)間后,他媽媽發(fā)現(xiàn)小青忘帶了溜冰鞋,于是立即騎自行車(chē)沿小青行進(jìn)的路線勻速去追趕,媽媽追上小青后,立即沿原路線勻速返回家,但由于路上行人漸多,媽媽返回時(shí)騎車(chē)的速度只是原來(lái)速度的三分之二,小青繼續(xù)以原速度步行前往森林公園,媽媽與小青之間的路程米與小青從家出發(fā)后步行的時(shí)間分之間的關(guān)系如圖所示,當(dāng)媽媽剛回到家時(shí),小青到森林公園的路程還有______米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l:為常數(shù),且經(jīng)過(guò)第四象限.
(1)若直線l與x軸交于點(diǎn),求m的值;
(2)求m的取值范圍:
(3)判斷點(diǎn)是否在直線l上,若不在,判斷在直線l的上方還是下方?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】你能化簡(jiǎn)(x-1)(x99+x98+x97+…+x+1)嗎?遇到這樣的問(wèn)題,我們可以先思考一下,從簡(jiǎn)單的情形入手,然后歸納出一些方法.
(1)分別化簡(jiǎn)下列各式:
①(x-1)(x+1)=___________;
②(x-1)(x2+x+1)=___________;
③(x-1)(x3+x2+1)=___________;
……
由此我們可以得到:(x-1)(x99+x98+x97+…+x+1)=________________.
(2)請(qǐng)你利用上面的結(jié)論計(jì)算:
299+298+297+…+2+1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的函數(shù)圖象反映的過(guò)程是:李大爺每天早上都到公園鍛煉,他從家去公園鍛煉一會(huì)兒,又去了菜市場(chǎng)后馬上回家,其中表示時(shí)間,表示李大爺離他家的距離。
(1)李大爺家到公園的距離是多少千米,他在公園銀煉了多少小時(shí);
(2)李大爺從菜市場(chǎng)回家的平均速度;
(3)李大爺從家到菜市場(chǎng)的平均速度。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com