如圖,黎叔叔想用60m長的籬笆靠墻MN圍成一個矩形花圃ABCD,已知墻長MN=30m.
(1)能否使矩形花圃ABCD的面積為400m2?若能,請說明圍法;若不能,請說明理由.
(2)請你幫助黎叔叔設(shè)計一種圍法,使矩形花圃ABCD的面積最大,并求出最大面積.
(1)能,長為20m,寬為20m;(2)長為30m,寬為15m時,面積最大為:450.
解析試題分析:(1)由于籬笆總長為30m,設(shè)垂直于墻的AB邊長為m,由此得到BD=()m,接著根據(jù)題意列出方程,解方程即可求出AB的長;
(2)根據(jù)(1)得到矩形花圃ABCD的面積為,求出此函數(shù)的最值即可.
試題解析:(1)依題意可知:AB邊長為m,由此得到BD=()m,∴,解得:,.當(dāng)時,BD==20,當(dāng)時,BD==40>30,∵墻可利用的最大長度為15m,∴舍去.∴AB的長為20m,BD的長為20m;
(2)設(shè)AB邊長為m,花圃的面積為,則.
∴當(dāng)時,.而當(dāng)時,BD==30,可以構(gòu)成矩形.
∴當(dāng)時,BD==30,可以構(gòu)成的矩形的面積最大,為450.
考點:1.一元二次方程的應(yīng)用;2.二次函數(shù)的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖,直線與x軸相交于點A,與直線相交于點P.動點E從原點O出發(fā),以每秒1個單位長度的速度沿著OPA的路線向點A勻速運動(E不與點O,A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運動t秒時,矩形EBOF與△OPA重疊部分面積為S.
(1)求點P的坐標(biāo);
(2)請判斷△OPA的形狀并說明理由;
(3)請?zhí)骄縎與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個單位,再向下平移7個單位得到拋物線C2。C2的圖象與x軸交于A、B兩點(點A在點B的左側(cè))。
(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點C,與拋物線C2交于點D,與拋物線C1交于點E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計算它的面積;
(3)若點F為對稱軸DE上任意一點,在拋物線C2上是否存在這樣的點G,使以O(shè)、B、F、G四點為頂點的四邊形是平行四邊形,如果存在,請求出點G的坐標(biāo),如果不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線AB分別交y軸、x 軸于A、B兩點,OA=2,,拋物線過A、B兩點.
(1)求直線AB和這個拋物線的解析式;
(2)設(shè)拋物線的頂點為D,求△ABD的面積
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當(dāng)t 取何值時,MN的長度l有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
有兩個直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。將這兩個直角三角形按圖1所示位置擺放,其中直角邊在同一直線上,且點與點重合,F(xiàn)固定,將以每秒1個單位長度的速度在上向右平移,當(dāng)點與點重合時運動停止。設(shè)平移時間為秒。
(1)當(dāng)為 秒時,邊恰好經(jīng)過點;當(dāng)為 秒時,運動停止;
(2)在平移過程中,設(shè)與重疊部分的面積為,請直接寫出與的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)當(dāng)停止運動后,如圖2,為線段上一點,若一動點從點出發(fā),先沿方向運動,到達(dá)點后再沿斜坡方向運動到達(dá)點,若該動點在線段上運動的速度是它在斜坡上運動速度的2倍,試確定斜坡的坡度,使得該動點從點運動到點所用的時間最短。(要求,簡述確定點位置的方法,但不要求證明。)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某農(nóng)戶計劃利用現(xiàn)有的一面墻(墻長8米),再修四面墻,建造如圖所示的長方體水池,培育不同品種的魚苗.他已備足可以修高為1.5m、長18m的墻的材料準(zhǔn)備施工,設(shè)圖中與現(xiàn)有一面墻垂直的三面墻的長度都為xm,即AD=EF=BC=xm.(不考慮墻的厚度).
(1)若想水池的總?cè)莘e為36m3,x應(yīng)等于多少?
(2)求水池的總?cè)莘eV與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(3)若想使水池的總?cè)莘eV最大,x應(yīng)為多少?最大容積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4)、D(2, n)三點.
(1)求拋物線的解析式及點D坐標(biāo);
(2)點M是拋物線對稱軸上一動點,求使BM-AM的值最大時的點M的坐標(biāo);
(3)如圖2,將射線BA沿BO翻折,交y軸于點C,交拋物線于點N,求點N的坐標(biāo);
(4)在(3)的條件下,連結(jié)ON,OD,如圖2,請求出所有滿足△POD∽△NOB的點P坐標(biāo)(點P、O、D分別與點N、O、B對應(yīng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線y=x+3與坐標(biāo)軸分別交于A,B兩點,拋物線y=ax2+bx﹣3a經(jīng)過點A,B,頂點為C,連接CB并延長交x軸于點E,點D與點B關(guān)于拋物線的對稱軸MN對稱.
(1)求拋物線的解析式及頂點C的坐標(biāo);
(2)求證:四邊形ABCD是直角梯形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交與點A(1,0)與點B, 且過點C(0,3),
(1)求該拋物線的解析式;
(2)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?,若存在,求出點P的坐標(biāo)及△PBC的面積最大值.若沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com