【題目】已知拋物線y=(x﹣m)2﹣(x﹣m),其中m是常數(shù).
(1)求證:不論m為何值,該拋物線與x軸一定有兩個(gè)公共點(diǎn);
(2)若該拋物線的對(duì)稱軸為直線x= . ①求該拋物線的函數(shù)解析式;
②把該拋物線沿y軸向上平移多少個(gè)單位長(zhǎng)度后,得到的拋物線與x軸只有一個(gè)公共點(diǎn).

【答案】
(1)證明:y=(x﹣m)2﹣(x﹣m)=x2﹣(2m+1)x+m2+m,

∵△=(2m+1)2﹣4(m2+m)=1>0,

∴不論m為何值,該拋物線與x軸一定有兩個(gè)公共點(diǎn)


(2)解:①∵x=﹣ = ,

∴m=2,

∴拋物線解析式為y=x2﹣5x+6;

②設(shè)拋物線沿y軸向上平移k個(gè)單位長(zhǎng)度后,得到的拋物線與x軸只有一個(gè)公共點(diǎn),則平移后拋物線解析式為y=x2﹣5x+6+k,

∵拋物線y=x2﹣5x+6+k與x軸只有一個(gè)公共點(diǎn),

∴△=52﹣4(6+k)=0,

∴k= ,

即把該拋物線沿y軸向上平移 個(gè)單位長(zhǎng)度后,得到的拋物線與x軸只有一個(gè)公共點(diǎn).


【解析】(1)先把拋物線解析式化為一般式,再計(jì)算△的值,得到△=1>0,于是根據(jù)△=b2﹣4ac決定拋物線與x軸的交點(diǎn)個(gè)數(shù)即可判斷不論m為何值,該拋物線與x軸一定有兩個(gè)公共點(diǎn);(2)①根據(jù)對(duì)稱軸方程得到=﹣ = ,然后解出m的值即可得到拋物線解析式;②根據(jù)拋物線的平移規(guī)律,設(shè)拋物線沿y軸向上平移k個(gè)單位長(zhǎng)度后,得到的拋物線與x軸只有一個(gè)公共點(diǎn),則平移后拋物線解析式為y=x2﹣5x+6+k,再利用拋物線與x軸的只有一個(gè)交點(diǎn)得到△=52﹣4(6+k)=0, 然后解關(guān)于k的方程即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,過原點(diǎn)O及點(diǎn)A(0,2)、C(6,0)作矩形OABC,∠AOC的平分線交AB于點(diǎn)D.點(diǎn)P從點(diǎn)O出發(fā),以每秒 個(gè)單位長(zhǎng)度的速度沿射線OD方向移動(dòng);同時(shí)點(diǎn)Q從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸正方向移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.

(1)當(dāng)點(diǎn)P移動(dòng)到點(diǎn)D時(shí),求出此時(shí)t的值;
(2)當(dāng)t為何值時(shí),△PQB為直角三角形;
(3)已知過O、P、Q三點(diǎn)的拋物線解析式為y=﹣ (x﹣t)2+t(t>0).問是否存在某一時(shí)刻t,將△PQB繞某點(diǎn)旋轉(zhuǎn)180°后,三個(gè)對(duì)應(yīng)頂點(diǎn)恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=5,BC=3,AC=4,以點(diǎn)C為圓心的圓與AB相切,則⊙C的半徑為(
A.2.3
B.2.4
C.2.5
D.2.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)C的坐標(biāo)為(﹣4,0),點(diǎn)P在射線AB上運(yùn)動(dòng),連結(jié)CP與y軸交于點(diǎn)D,連結(jié)BD.過P,D,B三點(diǎn)作⊙Q與y軸的另一個(gè)交點(diǎn)為E,延長(zhǎng)DQ交⊙Q于點(diǎn)F,連結(jié)EF,BF.

(1)求直線AB的函數(shù)解析式;
(2)當(dāng)點(diǎn)P在線段AB(不包括A,B兩點(diǎn))上時(shí).
①求證:∠BDE=∠ADP;
②設(shè)DE=x,DF=y.請(qǐng)求出y關(guān)于x的函數(shù)解析式;
(3)請(qǐng)你探究:點(diǎn)P在運(yùn)動(dòng)過程中,是否存在以B,D,F(xiàn)為頂點(diǎn)的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時(shí)點(diǎn)P的坐標(biāo):如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一節(jié)地理課結(jié)束后,小明拿出地球儀,突發(fā)奇想:地球儀環(huán)形支架的長(zhǎng)度比地球儀上畫的赤道的長(zhǎng)度長(zhǎng)多少? 活動(dòng)一:如圖1,求大圓與小圓的周長(zhǎng)之差?
活動(dòng)二:如圖2,以O(shè)為圓心,任意畫出兩個(gè)圓,兩圓半徑相差6cm,求大圓與小圓的周長(zhǎng)之差?
活動(dòng)三:若地球儀與環(huán)形支架之間的間隙為k(cm),請(qǐng)直接寫出地球儀環(huán)形支架的長(zhǎng)度比地球儀上畫的赤道的長(zhǎng)度長(zhǎng)多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù) y=﹣2x﹣2

(1)根據(jù)關(guān)系式畫出函數(shù)的圖象

(2)求出圖象與 x 軸、y 軸的交點(diǎn) A、B 的坐標(biāo).

(3)求 A、B 兩點(diǎn)間的距離.

(4)y 的值隨 x 值的增大怎樣變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有公路l1同側(cè)、l2異側(cè)的兩個(gè)城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號(hào)發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請(qǐng)用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置.(保留作圖痕跡,不要求寫出畫法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCAm°,ABC和∠ACD的平分線相交于點(diǎn)A1得∠A1;A1BC和∠A1CD的平分線相交于點(diǎn)A2得∠A2;…;A2018BC和∠A2018CD的平分線交于點(diǎn)A2019,則∠A2019________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形ABCO的兩邊OA,OC在坐標(biāo)軸的正半軸上,BC∥x軸,OA=OC=4,以直線x=1為對(duì)稱軸的拋物線過A,B,C三點(diǎn).

(1)求該拋物線的函數(shù)解析式;
(2)已知直線l的解析式為y=x+m,它與x軸交于點(diǎn)G,在梯形ABCO的一邊上取點(diǎn)P.
①當(dāng)m=0時(shí),如圖1,點(diǎn)P是拋物線對(duì)稱軸與BC的交點(diǎn),過點(diǎn)P作PH⊥直線l于點(diǎn)H,連結(jié)OP,試求△OPH的面積;
②當(dāng)m=﹣3時(shí),過點(diǎn)P分別作x軸、直線l的垂線,垂足為點(diǎn)E,F(xiàn).是否存在這樣的點(diǎn)P,使以P,E,F(xiàn)為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案