【題目】某次學生夏令營活動,有小學生、初中生、高中生和大學生參加,共200人,各類學生人數(shù)比例見扇形統(tǒng)計圖.

(1)參加這次夏令營活動的初中生共有多少人?

(2)活動組織者號召參加這次夏令營活動的所有學生為貧困學生捐款結果小學生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大學生每人捐款20元問平均每人捐款是多少元?

【答案】(1)80人;(2)11.5元

【解析】

(1)參加這次夏令營活動的初中生所占比例是:1-10%-20%-30%=40%,就可以求出人數(shù).

(2)小學生、高中生和大學生的人數(shù)為200×20%=40,200×30%=60,200×10%=20,根據(jù)平均數(shù)公式就可以求出答案

1)參加這次夏令營活動的初中生共有200×(1﹣10%﹣20%﹣30%)=80人;

(2)小學生、高中生和大學生的人數(shù)分別為:

200×20%=40,200×30%=60,200×10%=20,

所以平均每人捐款為:(元).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列說法: ①c=0;②該拋物線的對稱軸是直線x=﹣1;③當x=1時,y=2a;④am2+bm+a>0(m≠﹣1).
其中正確的個數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形是將正三角形按一定規(guī)律排列,則第4個圖形中所有正三角形的個數(shù)有(
A.160
B.161
C.162
D.163

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B在點A正南的方向上,與點A的距離為lcm;點C在點A北偏東30°的方向上,與點A的距離為2cm;點D在點A正西的方向上,與點A的距離為3cm.以點A為原點,正北方向為y軸,建立平面直角坐標系,規(guī)定一個單位長度代表1cm長.

(1)畫出點C、D;

(2)寫出點B、D的坐標,將點B作怎樣的平移可得到點D?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B表示的數(shù)分別是a、b,點A01對應的兩點(不包括這兩點)之間移動,點B在﹣3,﹣2對應的兩點之間移動,下列四個代數(shù)式的值可能比2018大的是( 。

A. B. b﹣a C. (a﹣b)2 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答題
(1)先化簡,再求值:1﹣ + ,其中a=
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為降低空氣污染,公交公司決定全部更換節(jié)能環(huán)保的燃氣公交車.計劃購買A型和B型兩種公交車共10輛,其中每臺的價格,年均載客量如表:

A型

B型

價格(萬元/輛)

a

b

年均載客量(萬人/年/輛)

60

100

若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元
(1)求購買每輛A型公交車和每輛B型公交車分別多少萬元?
(2)如果該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車年均載客總和不少于680萬人次,有哪幾種購車方案?請你設計一個方案,使得購車總費用最少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABO中,斜邊AB=1.若OC//BA,∠AOC=36°,則(
A.點B到AO的距離為sin54°
B.點B到AO的距離為tan36°
C.點A到OC的距離為sin36°sin54°
D.點A到OC的距離為cos36°sin54°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點C在AOB的一邊OA上,過點C的直線DE//OB,CF平分ACD,CG CF于C .

(1)若O =40,求ECF的度數(shù);

(2)求證:CG平分OCD;

(3)當O為多少度時,CD平分OCF,并說明理由.

查看答案和解析>>

同步練習冊答案