【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點,過點A作AD⊥CD于點D,交⊙O于點E,且=.
(1)求證:CD是⊙O的切線;
(2)若tan∠CAB=,BC=3,求DE的長.
【答案】(1)證明見解析;(2).
【解析】
(1)連結OC,由,根據(jù)圓周角定理得∠1=∠2,而∠1=∠OCA,則∠2=∠OCA,則可判斷OC∥AD,由于AD⊥CD,所以OC⊥CD,然后根據(jù)切線的判定定理得到CD是⊙O的切線;
(2)連結BE交OC于F,由AB是⊙O的直徑得∠ACB=90°,在Rt△ACB中,根據(jù)正切的定義得AC=4,再利用勾股定理計算出AB=5,然后證明Rt△ABC∽Rt△ACD,利用相似比先計算出AD=,再計算出CD=;根據(jù)垂徑定理的推論由得OC⊥BE,BF=EF,于是可判斷四邊形DEFC為矩形,所以EF=CD=,則BE=2EF=,然后在Rt△ABE中,利用勾股定理計算出AE=,再利用DE=AD﹣AE求解.
解:(1)證明:連結OC,如圖,
∵,
∴∠1=∠2,
∵OC=OA,
∴∠1=∠OCA,
∴∠2=∠OCA,
∴OC∥AD,
∵AD⊥CD,
∴OC⊥CD,
∴CD是⊙O的切線;
(2)解:連結BE交OC于F,如圖,
∵AB是⊙O的直徑,
∴∠ACB=90°,
在Rt△ACB中,tan∠CAB=,
而BC=3,
∴AC=4,
∴AB=,
∵∠1=∠2,
∴Rt△ABC∽Rt△ACD,
∴,即,解得,
∵,即,解得,
∵,
∴OC⊥BE,BF=EF,
∴四邊形DEFC為矩形,
∴,
∴,
∵AB為直徑,
∴∠BEA=90°,
在Rt△ABE中,,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】某地區(qū)為進一步發(fā)展基礎教育,自年以來加大了教育經費的投入,年該地區(qū)投入教育經費萬元,年投入教育經費萬元.
(1)求該地區(qū)這兩年投入教育經費的年平均增長率;
(2)若該地區(qū)教育經費的投入還將保持相同的年平均增長率,請預算年該地區(qū)投入教育經費為 萬元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,AB=26,以AB為直徑的⊙O交AC邊于點D,點E在BC上,連結BD,DE,∠CDE=∠ABD.
(1)證明:DE是⊙O的切線;
(2)若sin∠CDE=,求DC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠APB=30°,圓心在PB上的⊙O的半徑為1cm,OP=3cm,若⊙O沿BP方向平移,當⊙O與PA相切時,圓心O平移的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線交軸于點在軸正方向上取點,使;過點作軸,交于點,在軸正方向上取點,使;過點作軸,交于點,在軸正方向上取點,使.記面積為,面積為面積為,則等于( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸交于點,與軸交點,拋物線過兩點,與軸交于另一點.
(1)求拋物線的解析式及點的坐標;
(2)在直線上方的拋物線上是否存在點,使與的交點恰好為的中點?如果存在,求出點的坐標,如果不存在,說明理由.
(3)若點在拋物線上且橫坐標為,點是拋物線對稱軸上一點,在拋物線上存在一點,使以為頂點的四邊形是平行四邊形?直接寫出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點在拋物線上.
(1)如圖1,若拋物線經過點.
①求拋物線的解析式;
②設拋物線與軸交于點,連接,,,若點在拋物線上,且與的面積相等,求點的坐標;
(2)如圖2,若拋物線與軸交于點D過點作軸的平行線交拋物線于另一點.點為拋物線的對稱軸與軸的交點,為線段上一動點.若以M,D,E為頂點的三角形與相似.并且符合條件的點恰有個,請直接寫出拋物線的解析式及相應的點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的內接三角形,是的直徑,平分,交于點,交于點,連接.
求證:;
①當四邊形為平行四邊形時,的長為 ;
②若,則的長為 (結果保留)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com