【題目】如圖,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE平分∠ABC,則下列關(guān)系式中成立的有( )
①; ②;③ ;④; ⑤
A. 2個 B. 3個 C. 4個 D. 5個
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E在邊DC上,DE=7,EC=3,把線段AE繞點(diǎn)A旋轉(zhuǎn)后使點(diǎn)E落在直線BC上的點(diǎn)P處,則CP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),拋物線與x軸交于A(1,0)、B(t,0)(t >0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),若拋物線的對稱軸為直線x=1,
(1)求拋物線的函數(shù)解析式;
(2 若點(diǎn)D是拋物線BC段上的動點(diǎn),且點(diǎn)D到直線BC的距離為,求點(diǎn)D的坐標(biāo)
(3)如圖(2),若直線y=mx+n經(jīng)過點(diǎn)A,交y軸于點(diǎn)E(0,1),點(diǎn)P是直線AE下方拋物線上一點(diǎn),過點(diǎn)P作x軸的垂線交直線AE于點(diǎn)M,點(diǎn)N在線段AM延長線上,且PM=PN,是否存在點(diǎn)P,使△PMN的周長有最大值?若存在,求出點(diǎn)P的坐標(biāo)及△PMN的周長的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A市有近20年的馬拉松比賽歷史,過去全程馬拉松名額一直相對較少。而近幾年,這一現(xiàn)狀大大改變,很多想?yún)⒓尤恬R拉松(簡稱全馬)的跑者報不上名。所以該城市近兩年也大幅增加“全馬”的名額。2017年,參加“全馬”的人數(shù)比“半馬”的人少,但是2018年,2019年參加“全馬”的人數(shù)呈上升趨勢,且每年比前一年均增加25%(即2018年比2017年增加25%,2019年比2018年增加25%),2019年,有12500名“全馬”參賽者。
(1)求2017年、2018年“全馬”參賽人數(shù);
(2)據(jù)贊助食物的某商家反映:2017年與2018年該商家分別給參加“全馬”和“半馬”的參賽者提供了不同價格的食物,每個“全馬”參賽者獲得的食物價值高于“半馬”參賽者,2017年,商家提供食物共用去22萬元;這兩年商家是按同一個標(biāo)準(zhǔn)分別給“全馬”和“半馬”參賽者提供食物(人太多,標(biāo)準(zhǔn)不可輕易提高),即使這樣,2018年,雖然參加馬拉松比賽的總?cè)藬?shù)與2017年一樣多,但是由于“全馬”參賽者人數(shù)剛好與“半馬”參賽者人數(shù)調(diào)換了,贊助商比2017年多提供了p萬元的食物;商家發(fā)現(xiàn)這p萬元的食物剛好可以供400名“全馬”參賽者和400名“半馬”參賽者享用。求p的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)取何值時,下列各式在實(shí)數(shù)范圍內(nèi)有意義?
(1);
(2);
(3);
(4);
(5);
(6).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:
(1)過點(diǎn)A畫高AD;
(2)過點(diǎn)B畫中線BE;
(3)過點(diǎn)C畫角平分線CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,分別以AB、AC為邊作等邊三角形ABD與等邊三角形ACE,連接BE、CD,BE的延長線與CD交于點(diǎn)F,連接AF,有以下四個結(jié)論:①;②FA平分;③;④.其中一定正確的結(jié)論有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一元二次方程滿足,那么我們稱這個方程為“鳳凰”方程.已知是“鳳凰”方程,且有兩個相等的實(shí)數(shù)根,則下列結(jié)論正確的是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN如圖(1)的位置時,
求證:①△ADC≌△CEB ②DE=AD+BE
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(2)的位置時,直接寫出DE、AD、BE三者之間的關(guān)系 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com