【題目】如圖,在四邊形ABCD中,AD∥BC,AD=2,AB=2 ,以點(diǎn)A為圓心,AD為半徑的圓與BC相切于點(diǎn)E,交AB于點(diǎn)F
(1)求∠ABE的大小及 的長(zhǎng)度;
(2)在BE的延長(zhǎng)線上取一點(diǎn)G,使得 上的一個(gè)動(dòng)點(diǎn)P到點(diǎn)G的最短距離為2 ﹣2,求BG的長(zhǎng).
【答案】
(1)解:連接AE,如圖1,
∵AD為半徑的圓與BC相切于點(diǎn)E,
∴AE⊥BC,AE=AD=2.
在Rt△AEB中,
sin∠ABE= = = ,
∴∠ABE=45°.
∵AD∥BC,
∴∠DAB+∠ABE=180°,
∴∠DAB=135°,
∴ 的長(zhǎng)度為 = ;
(2)解:如圖2,
根據(jù)兩點(diǎn)之間線段最短可得:
當(dāng)A、P、G三點(diǎn)共線時(shí)PG最短,
此時(shí)AG=AP+PG=2+2 ﹣2=2 ,
∴AG=AB.
∵AE⊥BG,
∴BE=EG.
∵BE= = =2,
∴EG=2,
∴BG=4.
過P作PM垂直BC于M,將PG沿PM翻折得G',此時(shí)BG'=4﹣2×(2﹣√2)=2 ,點(diǎn)G′也滿足條件.
綜上,存在滿足條件的BG=4或2 .
【解析】(1)連接AE,如圖1,根據(jù)圓的切線的性質(zhì)可得AE⊥BC,解Rt△AEB可求出∠ABE,進(jìn)而得到∠DAB,然后運(yùn)用圓弧長(zhǎng)公式就可求出 的長(zhǎng)度;(2)如圖2,根據(jù)兩點(diǎn)之間線段最短可得:當(dāng)A、P、G三點(diǎn)共線時(shí)PG最短,此時(shí)AG=AP+PG=2 =AB,根據(jù)等腰三角形的性質(zhì)可得BE=EG,只需運(yùn)用勾股定理求出BE,就可求出BG的長(zhǎng),再根據(jù)對(duì)稱性求出G′.
【考點(diǎn)精析】通過靈活運(yùn)用切線的性質(zhì)定理和弧長(zhǎng)計(jì)算公式,掌握切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑;若設(shè)⊙O半徑為R,n°的圓心角所對(duì)的弧長(zhǎng)為l,則l=nπr/180;注意:在應(yīng)用弧長(zhǎng)公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以點(diǎn)O為圓心的兩個(gè)同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點(diǎn)M,OM的延長(zhǎng)線與BC相交于點(diǎn)N.
(1)點(diǎn)N是線段BC的中點(diǎn)嗎?為什么?
(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 與 軸交于點(diǎn)A、B,與 軸交于點(diǎn)C,則能使△ABC為等腰三角形拋物線的條數(shù)是( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)F在平行四邊形ABCD的邊AB上,射線CF交DA的延長(zhǎng)線于點(diǎn)E,在不添加輔助線的情況下,與△AEF相似的三角形有( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有大小、質(zhì)地完全相同的4只小球,小球上分別標(biāo)有1、2、3、4四個(gè)數(shù)字
(1)從袋中隨機(jī)摸出一只小球,求小球上所標(biāo)數(shù)字為奇數(shù)的概率;
(2)從袋中隨機(jī)摸出一只小球,再從剩下的小球中隨機(jī)摸出一只小球,求兩次摸出的小球上所標(biāo)數(shù)字之和為5的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時(shí),連接B1B,取BB1的中點(diǎn)D,連接A1D,則A1D的長(zhǎng)度是( )
A.
B.2
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司今年如果用原線下銷售方式銷售一產(chǎn)品,每月的銷售額可達(dá)100萬元.由于該產(chǎn)品供不應(yīng)求,公司計(jì)劃于3月份開始全部改為線上銷售,這樣,預(yù)計(jì)今年每月的銷售額y(萬元)與月份x(月)之間的函數(shù)關(guān)系的圖象如圖1中的點(diǎn)狀圖所示(5月及以后每月的銷售額都相同),而經(jīng)銷成本p(萬元)與銷售額y(萬元)之間函數(shù)關(guān)系的圖象圖2中線段AB所示.
(1)求經(jīng)銷成本p(萬元)與銷售額y(萬元)之間的函數(shù)關(guān)系式;
(2)分別求該公司3月,4月的利潤(rùn);
(3)問:把3月作為第一個(gè)月開始往后算,最早到第幾個(gè)月止,該公司改用線上銷售后所獲得利潤(rùn)總額比同期用線下方式銷售所能獲得的利潤(rùn)總額至少多出200萬元?(利潤(rùn)=銷售額﹣經(jīng)銷成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(0,1),點(diǎn)B在x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角三角形ABC,使點(diǎn)C在第一象限,∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,點(diǎn)C的縱坐標(biāo)為y,則表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學(xué)去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是;
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請(qǐng)用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com