【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點(diǎn)O.有直角∠MPN,使直角頂點(diǎn)P與點(diǎn)O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點(diǎn),連接EF交OB于點(diǎn)G,則下列結(jié)論中正確的是 .
(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,AE=;(5)OGBD=AE2+CF2.
【答案】(1),(2),(3),(5).
【解析】
試題分析:(1)∵四邊形ABCD是正方形,
∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,
∴∠BOF+∠COF=90°,
∵∠EOF=90°,
∴∠BOF+∠COE=90°,
∴∠BOE=∠COF,
在△BOE和△COF中,
,
∴△BOE≌△COF(ASA),
∴OE=OF,BE=CF,
∴EF=OE;故正確;
(2)∵S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,
∴S四邊形OEBF:S正方形ABCD=1:4;故正確;
(3)∴BE+BF=BF+CF=BC=OA;故正確;
(4)過點(diǎn)O作OH⊥BC,
∵BC=1,
∴OH=BC=,
設(shè)AE=x,則BE=CF=1﹣x,BF=x,
∴S△BEF+S△COF=BEBF+CFOH=x(1﹣x)+(1﹣x)×=﹣(x﹣)2+,
∵a=﹣<0,
∴當(dāng)x=時,S△BEF+S△COF最大;
即在旋轉(zhuǎn)過程中,當(dāng)△BEF與△COF的面積之和最大時,AE=;故錯誤;
(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,
∴△OEG∽△OBE,
∴OE:OB=OG:OE,
∴OGOB=OE2,
∵OB=BD,OE=EF,
∴OGBD=EF2,
∵在△BEF中,EF2=BE2+BF2,
∴EF2=AE2+CF2,
∴OGBD=AE2+CF2.故正確.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程(x﹣3)2=m2的解是( 。
A. x1=m,x2=﹣m B. x1=3+m,x2=3﹣m
C. x1=3+m,x2=﹣3﹣m D. x1=3+m,x2=﹣3+m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是 ( )
A. 零表示什么也沒有
B. 一場比賽贏4個球得+4分, -3分表示輸了3個球
C. 7沒有符號
D. 零既不是正數(shù),也不是負(fù)數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果a∥b,a∥c,那么b與c的位置關(guān)系是( 。
A. 不一定平行 B. 一定平行 C. 一定不平行 D. 以上都有可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】英國曼徹斯特大學(xué)的兩位科學(xué)家因?yàn)槌晒Φ貜氖蟹蛛x出石墨烯,榮獲了諾貝爾物理學(xué)獎,石墨烯目前是世界上最薄也是最堅硬的納米材料,同時還是導(dǎo)電性最好的材料,其原理厚度僅0.00000000034米,將0.00000000034這個數(shù)用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A (16,0)、C (0,8),四邊形OABC是矩形,D、E分別是OA、BC邊上的點(diǎn),沿著DE折疊矩形,點(diǎn)A恰好落往y軸上的點(diǎn)C處,點(diǎn)B落在點(diǎn)B'處。
(1) 求D、E兩點(diǎn)的坐標(biāo);
(2) 反比例函數(shù)y = (k >0) 在第一象限的圖像經(jīng)過E點(diǎn),判斷B′是否在這個反比例函數(shù)的圖像上? 并說明理由;
(3) 點(diǎn)F是 (2) 中反比例函數(shù)的圖像與原矩形的AB邊的交點(diǎn),點(diǎn)G在平面直角坐標(biāo)系中,以點(diǎn)D、E、F、G為頂點(diǎn)的四邊形是平行四邊形,求G點(diǎn)的坐標(biāo).(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E.
(1) 求證:AC平分∠DAB;
(2) 連接BE交AC于點(diǎn)F,若cos∠CAD=,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com