【題目】若一個(gè)矩形的一邊是另一邊的兩倍,則稱這個(gè)矩形為方形.如圖1,矩形中,,則稱為方形.
(Ⅰ)設(shè)是方形的一組鄰邊,寫出的一組值為__________;
(Ⅱ)在中,將分別五等分,連結(jié)兩邊對(duì)應(yīng)的等分點(diǎn),以這些連結(jié)線為一邊作矩形,使得這些矩形的邊的對(duì)邊分別在上,如圖2所示.
①若,邊上的高為,判斷以為一邊的矩形是否是方形?_________(填“是”或“否”);②若以為一邊的矩形為方形,則與邊上的高之比為__________.
【答案】 否 或
【解析】
(1)答案不唯一,根據(jù)已知舉出即可;
(2)①求出△ABC∽△AB1C1∽△AB2C2∽△AB3C3∽△AB4C4,推出,,,,求出B1C1=5,B2C2=10,B3C3=15,B4C4=20,AE=4,AH=8,AG=12,AN=16,MN=GN=GH=HE=4,B1Q=B2O=B3Z=B4K=4,根據(jù)已知判斷即可;
②設(shè)AM=h,根據(jù)△ABC∽△AB3C3,得出,求出MN=GN=GH=HE=h,分為兩種情況:當(dāng)B3C3=2×h時(shí),當(dāng)B3C3=×h時(shí),代入求出即可.
(1)答案不唯一,如a=1,b=2;
(2)①以B1C1為一邊的矩形不是方形.
理由是:過A作AM⊥BC于M,交B1C1于E,交B2C2于H,交B3C3于G,交B4C4于N,則AM⊥B4C4,AM⊥B3C3,AM⊥B2C2,AM⊥B1C1,
∵由矩形的性質(zhì)得:BC∥B1C1∥B2C2∥B3C3∥B4C4,
∴△ABC∽△AB1C1∽△AB2C2∽△AB3C3∽△AB4C4,
∴,,,,
∵AM=20,BC=25,
∴B1C1=5,B2C2=10,B3C3=15,B4C4=20,AE=4,AH=8,AG=12,AN=16,
∴MN=GN=GH=HE=4,
∴B1Q=B2O=B3Z=B4K=4,
即B1C1≠2B1Q,B1Q≠2B1C1,
∴以B1C1為一邊的矩形不是方形;
②∵以B3C3為一邊的矩形為方形,設(shè)AM=h,
∴△ABC∽△AB3C3,
∴,
則AG=h,
∴MN=GN=GH=HE=h,
當(dāng)B3C3=2×h時(shí),;
當(dāng)B3C3=h時(shí),.
綜合上述:BC與BC邊上的高之比是或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ABCD,點(diǎn)E是BC邊上的一點(diǎn),將邊AD延長(zhǎng)至點(diǎn)F,使∠AFC=∠DEC.
(1)求證:四邊形DECF是平行四邊形;
(2)若AB=13,DF=14,tan A=,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).
三等分任意角問題是數(shù)學(xué)史上一個(gè)著名的問題,直到1837年,數(shù)學(xué)家才證明了“三等分任意角”是不能用尺規(guī)完成的.
在探索中,出現(xiàn)了不同的解決問題的方法
方法一:
如圖(1),四邊形ABCD是矩形,F是DA延長(zhǎng)線上一點(diǎn),G是CF上一點(diǎn),CF與AB交于點(diǎn)E,且∠ACG=∠AGC,∠GAF=∠F,此時(shí)∠ECB=∠ACB.
方法二:
數(shù)學(xué)家帕普斯借助函數(shù)給出一種“三等分銳角”的方法(如圖(2)):將給定的銳角∠AOB置于平面直角坐標(biāo)系中,邊OB在x軸上,邊OA與函數(shù)y=的圖象交于點(diǎn)P,以點(diǎn)P為圓心,以2OP長(zhǎng)為半徑作弧交圖象于點(diǎn)R.過點(diǎn)P作x軸的平行線,過點(diǎn)R作y軸的平行線,兩直線相交于點(diǎn)M,連接OM得到∠AOB,過點(diǎn)P作PH⊥x軸于點(diǎn)H,過點(diǎn)R作RQ⊥PH于點(diǎn)Q,則∠MOB=∠AOB.
(1)在“方法一”中,若∠ACF=40°,GF=4,求BC的長(zhǎng).
(2)完成“方法二”的證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,直線與x軸交于C點(diǎn),與y軸交于點(diǎn)E,點(diǎn)A在x軸的負(fù)半軸,以A點(diǎn)為圓心,AO為半徑的圓與直線的CE相切于點(diǎn)F,交x軸負(fù)半軸于另一點(diǎn)B.
(1)求的半徑;
(2)連BF、AE,則BF與AE之間有什么位置關(guān)系?寫出結(jié)論并證明.
(3)如圖②,以AC為直徑作交y軸于M,N兩點(diǎn),點(diǎn)P是弧MC上任意一點(diǎn),點(diǎn)Q是弧PM的中點(diǎn),連CP,NQ,延長(zhǎng)CP,NQ交于D點(diǎn),求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測(cè)速,所有車輛限速40千米/小時(shí).?dāng)?shù)學(xué)實(shí)踐活動(dòng)小組設(shè)計(jì)了如下活動(dòng):在l上確定A,B兩點(diǎn),并在AB路段進(jìn)行區(qū)間測(cè)速在l外取一點(diǎn)P,作PC⊥1,垂足為點(diǎn)C.測(cè)得PC=30米,∠APC=71°,∠BPC=35°,測(cè)得一汽車從點(diǎn)A到點(diǎn)B用時(shí)6秒,請(qǐng)你用所學(xué)的數(shù)學(xué)知識(shí)說明該車是否超速?(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個(gè)正方形和兩對(duì)全等的直角三角形,得到一個(gè)恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個(gè)這樣的圖形拼成,若a=3,b=4,則該矩形的面積為( )
A. 20 B. 24 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù),與反比例函數(shù)交于點(diǎn)A(3,1)、B(-1,n),y1交y軸于點(diǎn)C,交x軸于點(diǎn)D.
(1)求反比例函數(shù)及一次函數(shù)的解析式;
(2)求△OBD的面積;
(3)根據(jù)圖象直接寫出>的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com