【題目】如圖,ABC是邊長為6的等邊三角形,PAC邊上一動(dòng)點(diǎn),由AC運(yùn)動(dòng)(與AC不重合),QCB延長線上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由BCB延長線方向運(yùn)動(dòng)(Q不與B重合),過PPEABE,連接PQABD

1)若AE=1時(shí),求AP的長;

2)當(dāng)∠BQD=30°時(shí),求AP的長;

3)在運(yùn)動(dòng)過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果發(fā)生變化,請(qǐng)說明理由.

【答案】(1)2;(2)2;(3)DE=3,不變.

【解析】試題分析:(1)由△APF是等邊三角形,PEAF,得到∠APE=30°,由30°所對(duì)直角邊等于斜邊的一半,得到結(jié)論;

2PPFQC,則AFP是等邊三角形,可得到△DBQ≌△DFP,得到∠BQD=∠BDQ=∠FDP=∠FPD=30°,得到BD=DF=FA,從而得到結(jié)論;

3)由(2)得到BD=DF得到DE+DF+EF=AB=6,從而得到DE=3,為定值

試題解析:解:1∵△APF是等邊三角形,∴∠A=60°PEAF∴∠APE=30°

AE=1,APE=30°,PEAF,AP=2AE=2;

2)過PFQC,則AFP是等邊三角形,

同時(shí)出發(fā),速度相同,即,

,,,

3)由(2)知,而是等邊三角形,

為定值,即的長不變

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4算術(shù)的平方根是(

A. ±2 B. 2 C. 2 D. ±16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)多邊形所有內(nèi)角都是135°,則這個(gè)多邊形的邊數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、cABC的三邊,且滿足(ab)(a2+b2c2=0,則ABC( )

A. 等邊三角形 B. 直角三角形

C. 等腰直角三角形 D. 等腰三角形或直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“圓材埋壁”是我國古代著名的數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問題,“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問鋸幾何?”用現(xiàn)代的數(shù)學(xué)語言表述是:“如圖,CD為O的直徑,弦ABCD垂足為E,CE=1寸,AB=10寸,求直徑CD的長”,依題意,CD長為(

A.12寸 B.13寸 C.24寸 D.26寸

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:x(2x﹣y)﹣(x+y)(x﹣y)+(x﹣y)2 , 其中x2+y2=5,xy=﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個(gè)頂點(diǎn)分別是A8,3),B4,0),C4,3),ABC=α°.拋物線y=x2+bx+c經(jīng)過點(diǎn)C,且對(duì)稱軸為x=,并與y軸交于點(diǎn)G

1)求拋物線的解析式及點(diǎn)G的坐標(biāo);

2)將RtABC沿x軸向右平移m個(gè)單位,使B點(diǎn)移到點(diǎn)E,然后將三角形繞點(diǎn)E順時(shí)針旋轉(zhuǎn)α°得到DEF.若點(diǎn)F恰好落在拋物線上.①求m的值;

②連接CGx軸于點(diǎn)H,連接FG,過BBPFG,交CG于點(diǎn)P,求證:PH=GH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)y=﹣x的圖象與反比例函數(shù)y=的圖象分別交于M,N兩點(diǎn),已知點(diǎn)M(﹣2,m).

(1)求反比例函數(shù)的表達(dá)式;

(2)點(diǎn)P為y軸上的一點(diǎn),當(dāng)MPN為直角時(shí),直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若三條線段中a=3b=5,c為奇數(shù),那么由ab、c為邊組成的三角形共有( 。

A. 1個(gè) B. 3個(gè) C. 無數(shù)多個(gè) D. 無法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案