【題目】在△ABC 中,∠ABC=60°,BC=8,點(diǎn) D 是 BC 邊的中點(diǎn),點(diǎn) E 是邊 AC上一點(diǎn),過點(diǎn) D 作 ED 的垂線交邊 AC 于點(diǎn) F,若 AC=7CF,且 DE 恰好平分△ABC 的周長,則△ABC 的面積為______.
【答案】10
【解析】
取 AC 的中點(diǎn) M,連接 DM,作 AH⊥BC 于 H.設(shè) DM=a,AE=b.想辦法證明 DM=EM=FM=a.AE=CF=b,2a=5b,解直角三角形求出 BH,CH 用 b 表示,根據(jù)邊長的長構(gòu)建方程求出 b 即可解決問題;
如圖,取AC的中點(diǎn)M,連接DM,作AH⊥BC于H.
設(shè) DM=a,AE=b.
∵BD=DC,AM=MC,
∴AB=2DM=2a,
∵AB+AE+BD=EC+DC,
∴EC=2a+b,AC=2a+2b,
∴AM=MC=a+b,
∴EM=a,
∴EM=DM,
∴∠MED=∠MDE,
∵∠MED+∠MFD=90°,∠MDE+∠MDF=90°,
∴∠MFD=∠MDF,
∴MD=MF=a,
∴CF=AE=b,
∵AC=7CF,
∴2a+2b=7b,
∴2a=5b,
∵AB=5b,AC=7b,
在 Rt△ABH 中,∵∠B=60°,
∴BH= AB= b,AH= b,
在 Rt△ACH 中,CH==b,
∴BC=BH+HC=8b,
∴8b=8,
∴b=1,
∴S△ABC= ×8×=10,
故答案為: 10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形面積為,延長至點(diǎn),使得,以為邊在正方形另一側(cè)作菱形,其中,依次延長類似以上操作再作三個形狀大小都相同的菱形,形成風(fēng)車狀圖形,依次連結(jié)點(diǎn)則四邊形的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,甲乙兩個轉(zhuǎn)盤被等分成五個扇形區(qū)域,上面分別標(biāo)有數(shù)字,同時自由轉(zhuǎn)動兩個轉(zhuǎn)盤,轉(zhuǎn)盤停止后,連個指針同時落在偶數(shù)上的概率是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個班的160厘米以上的女生中抽出一個作為旗手,在哪個班成功的機(jī)會大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為內(nèi)一點(diǎn),過點(diǎn)分別作,的平行線,交的四邊于、、、四點(diǎn),若面積為6,面積為4,則的面積為( )
A.B.C.1D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 :y=ax2 過點(diǎn)(2,2)
(1)直接寫出拋物線的解析式;
(2)如圖,△ABC 的三個頂點(diǎn)都在拋物線 上,且邊 AC 所在的直線解析式為y=x+b,若 AC 邊上的中線 BD 平行于 y 軸,求的值;
(3)如圖,點(diǎn) P 的坐標(biāo)為(0,2),點(diǎn) Q 為拋物線上 上一動點(diǎn),以 PQ 為直徑作⊙M,直線 y=t 與⊙M 相交于 H、K 兩點(diǎn)是否存在實(shí)數(shù) t,使得 HK 的長度為定值?若存在,求出 HK 的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊三角形空地上種草皮綠化,已知AB=20米,AC=30米,∠A=150°,草皮的售價為a元/米2,則購買草皮至少需要( 。
A. 450a元 B. 225a元 C. 150a元 D. 300a元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的直角坐標(biāo)系中,每個小方格都是邊長為1的正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(﹣3,﹣1).
(1)以O為中心作出△ABC的中心對稱圖形△A1B1C1,并寫出點(diǎn)B1坐標(biāo);
(2)以格點(diǎn)P為旋轉(zhuǎn)中心,將△ABC按順時針方向旋轉(zhuǎn)90°,得到△A′B′C′,且使點(diǎn)A的對應(yīng)點(diǎn)A′的恰好落在△A1B1C1的內(nèi)部格點(diǎn)上(不含△A1B1C1的邊上),寫出點(diǎn)P的坐標(biāo),并畫出旋轉(zhuǎn)后的△A′B′C′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面關(guān)于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=④x2-a=0(a為任意實(shí)數(shù);⑤=x-1一元二次方程的個數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com