已知如下圖,正方形ABCD中,E是CD邊上的一點(diǎn),F(xiàn)為BC延長(zhǎng)線上點(diǎn),CE=CF.

  (1)求證:△BEC≌△DFC;

  (2)若∠BEC=60°,求∠EFD的度數(shù)

 

【答案】

① △BEC≌△DFC;  ②

【解析】(1)根據(jù)正方形的性質(zhì)及全等三角形的判定方法即可證明△BCE≌△DCF;

(2)由兩個(gè)三角形全等的性質(zhì)得出∠CFD的度數(shù),再用等腰三角形的性質(zhì)求∠EFD的度數(shù).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知如下圖,正方形ABCD中,ECD邊上的一點(diǎn),FBC延長(zhǎng)線上一點(diǎn),CE=CF.

(1)求證:△BEC≌△DFC

(2)若∠BEC=60°,求∠EFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:044

已知如下圖,△ABC中,∠A=90°,AB=AC=6 cm,EFGH是正方形,求這個(gè)正方形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇興化九年級(jí)第一次聯(lián)考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知如下圖,正方形ABCD中,E是CD邊上的一點(diǎn),F(xiàn)為BC延長(zhǎng)線上點(diǎn),CE="CF."

(1)求證:△BEC≌△DFC;
(2)若∠BEC=60°,求∠EFD的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:證明題

已知如下圖,過正方形ABCD的頂點(diǎn)A作對(duì)角線BD的平行線,在這條直線上取點(diǎn)E,使BE=BD,且BE與AD交于點(diǎn)F。求證:DE=DF。

查看答案和解析>>

同步練習(xí)冊(cè)答案