(2000•吉林)如圖,一起重機(jī)的機(jī)身高21m,吊桿AB長36m,吊桿與水平線的夾角∠BAC可從30°升到80°.求起重機(jī)起吊的最大高度(吊鉤本身的長度和所掛重物的高度忽略不計(jì))和當(dāng)起重機(jī)位置不變時使用的最大水平距離(精確到0.1米,sin80°=0.9848,cos80°=0.1736,≈1.732)

【答案】分析:當(dāng)起重機(jī)起吊的高度最大時,△ABC的∠BAC=80°;當(dāng)起重機(jī)位置不變時水平距離最大時,∠BAC=30°,根據(jù)三角函數(shù)即可求解.
解答:解:在Rt△ABC中,當(dāng)∠BAC=80°時,
BC=ABsin80°=36×0.9848≈35.5(米);
35.5+21=56.5m,
∴起重機(jī)起吊的最大高度是56.5m;

在Rt△ABC中,當(dāng)∠BAC=30°時,
AC=AB•cos30°=36×≈31.18米.
同理,當(dāng)?shù)鯒U與水平線的夾角∠BAC=80°時,當(dāng)起重機(jī)位置到吊桿的頂端的水平距離是:36•cos80°=36×0.1736≈6.25米.
則當(dāng)起重機(jī)位置不變時使用的最大水平距離是:31.18-6.25≈24.9米.
點(diǎn)評:正確理解起重機(jī)起吊的高度最大,以及水平距離最大的條件是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2000•吉林)如圖,邊長為2cm的正六邊形ABCDEF的中心在坐標(biāo)原點(diǎn)上,點(diǎn)B在x軸的負(fù)半軸上.
(1)求出點(diǎn)A、點(diǎn)D、點(diǎn)E的坐標(biāo);
(2)求出圖象過A、D、E三點(diǎn)的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年吉林省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•吉林)如圖,邊長為2cm的正六邊形ABCDEF的中心在坐標(biāo)原點(diǎn)上,點(diǎn)B在x軸的負(fù)半軸上.
(1)求出點(diǎn)A、點(diǎn)D、點(diǎn)E的坐標(biāo);
(2)求出圖象過A、D、E三點(diǎn)的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2000•吉林)如圖,△ABC內(nèi)接于⊙O,AB=AC,直線XY切⊙O于點(diǎn)C,弦BD∥XY,AC、BD相交于點(diǎn)E.
(1)求證:△ABE≌△ACD;
(2)若AB=6cm,BC=4cm,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年吉林省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2000•吉林)如圖,⊙O中弦AB、CD相交于點(diǎn)P,PC=PD,PA=3cm,PB=4cm.那么CD的長為( )

A.4cm
B.2cm
C.4cm
D.2cm

查看答案和解析>>

同步練習(xí)冊答案