某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于50%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)的關(guān)系符合一次函數(shù)y=-x+140.
(1)直接寫出銷售單價x的取值范圍.
(2)若銷售該服裝獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價為多少元時,可獲得最大利潤,最大利潤是多少元?
分析:(1)根據(jù)成本為60元,寫出x的范圍;
(2)根據(jù)利潤=銷售量×(銷售單價-進(jìn)價),寫出關(guān)系式,求出最大利潤、
解答:解:(1)60≤x≤90;

(2)W=y(x-60)
=(-x+140)(x-60)
=-x2+200x-8400
=-(x-100)2+1600,
∵-1<0,
∴函數(shù)W有最大值,
∵60≤x≤90,
當(dāng)x=90時,W最大=1500(元).
答:銷售單價為90元時,可獲得最大利潤,最大利潤是1500元.
點評:本題考查了二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是讀懂題意,列出函數(shù)關(guān)系式,要求同學(xué)們掌握運用配方法求二次函數(shù)的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某商場試銷一種成本為50元/件的T恤,規(guī)定試銷期間單價不低于成本單價,又獲利不得高于50%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元/件)符合一次函數(shù)關(guān)系,試銷數(shù)據(jù)如下表:
售價(元/件)  55 60 70
 銷量(件) 75 70 60
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場獲得利潤為ω元,試寫出利潤ω與銷售單價x之間的關(guān)系式;銷售單價定為多少時,商場可獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•如東縣一模)某商場試銷一種成本為每件60元的服裝,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=65時,y=55;x=75時,y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;
(3)銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄂爾多斯)某商場試銷一種成本為每件60元的T恤,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于40%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)之間的函數(shù)圖象如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)若商場銷售這種T恤獲得利潤為W(元),求出利潤W(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;并求出當(dāng)銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于50%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)的關(guān)系符合一次函數(shù)y=-x+140.
(1)直接寫出銷售單價x的取值范圍.
(2)若銷售該服裝獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價為多少元時,可獲得最大利潤,最大利潤是多少元?
(3)若獲得利潤不低于1200元,試確定銷售單價x的范圍.

查看答案和解析>>

同步練習(xí)冊答案