【題目】如圖,AB是O的直徑,AE交O于點(diǎn)E,且與O的切線CD互相垂直,垂足為D.
(1)求證:∠EAC=∠CAB;
(2)若CD=4,AD=8:①求O的半徑;②求tan∠BAE的值.
【答案】
(1)證明:連接OC.
∵CD是⊙O的切線,
∴CD⊥OC,
又∵CD⊥AE,
∴OC∥AE,
∴∠1=∠3,
∵OC=OA,
∴∠2=∠3,
∴∠1=∠2,
即∠EAC=∠CAB;
(2)解:
①連接BC.
∵AB是⊙O的直徑,CD⊥AE于點(diǎn)D,
∴∠ACB=∠ADC=90°,
∵∠1=∠2,
∴△ACD∽△ABC,
∴ ,
∵AC2=AD2+CD2=42+82=80,
∴AB= =10,
∴⊙O的半徑為10÷2=5.
②連接CF與BF.
∵四邊形ABCF是⊙O的內(nèi)接四邊形,
∴∠ABC+∠AFC=180°,
∵∠DFC+∠AFC=180°,
∴∠DFC=∠ABC,
∵∠2+∠ABC=90°,∠DFC+∠DCF=90°,
∴∠2=∠DCF,
∵∠1=∠2,
∴∠1=∠DCF,
∵∠CDF=∠CDF,
∴△DCF∽△DAC,
∴ ,
∴DF= =2,
∴AF=AD﹣DF=8﹣2=6,
∵AB是⊙O的直徑,
∴∠BFA=90°,
∴BF= =8,
∴tan∠BAD= .
【解析】(1)首先連接OC,由CD是⊙O的切線,CD⊥OC,又由CD⊥AE,即可判定OC∥AE,根據(jù)平行線的性質(zhì)與等腰三角形的性質(zhì),即可證得∠EAC=∠CAB;(2)①連接BC,易證得△ACD∽△ABC,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得AB的長(zhǎng),繼而可得⊙O的半徑長(zhǎng);②連接CF與BF.由四邊形ABCF是⊙O的內(nèi)接四邊形,易證得△DCF∽△DAC,然后根據(jù)相似三角形的對(duì)應(yīng)邊成比例,求得AF的長(zhǎng),又由AB是⊙O的直徑,即可得∠BFA是直角,利用勾股定理求得BF的長(zhǎng),即可求得tan∠BAE的值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握?qǐng)A周角定理(頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】老王的魚(yú)塘里年初養(yǎng)了某種魚(yú)2000條,到年底捕撈出售,為了估計(jì)魚(yú)的總產(chǎn)量,從魚(yú)塘里捕撈了三次,得到如下表的數(shù)據(jù):
魚(yú)的條數(shù) | 平均每條魚(yú)的質(zhì)量 | |
第一次捕撈 | 10 | 1.7千克 |
第二次捕撈 | 25 | 1.8千克 |
第三次捕撈 | 15 | 2.0千克 |
若老王放養(yǎng)這種魚(yú)的成活率是95%,則:
(1)魚(yú)塘里這種魚(yú)平均每條重約多少千克?
(2)魚(yú)塘里這種魚(yú)的總產(chǎn)量是多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)點(diǎn)A(2,0)的兩條直線,分別交軸于B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=.
(1)求點(diǎn)B的坐標(biāo);
(2)若△ABC的面積為4,求的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)騎自行車去郊外春游,騎行1小時(shí)后,自行車出現(xiàn)故障,維修好后繼續(xù)騎行,下圖表示他離家的距離y(千米)與所用的時(shí)間x(時(shí))之間關(guān)系的圖象.
(1)根據(jù)圖象回答:小明到達(dá)離家最遠(yuǎn)的地方用了多長(zhǎng)時(shí)間?此時(shí)離家多遠(yuǎn)?
(2)求小明出發(fā)2.5小時(shí)后離家多遠(yuǎn);
(3)求小明出發(fā)多長(zhǎng)時(shí)間離家12千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人先后從公園大門出發(fā),沿綠道向碼頭步行,乙先到碼頭并在原地等甲到達(dá).圖1是他們行走的路程y(m)與甲出發(fā)的時(shí)間x(min)之間的函數(shù)圖象.
(1)求線段AC對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)寫出點(diǎn)B的坐標(biāo)和它的實(shí)際意義;
(3)設(shè)d(m)表示甲、乙之間的距離,在圖2中畫出d與x之間的函數(shù)圖象(標(biāo)注必要數(shù)據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F(xiàn)分別是 □ABCD的邊AB,CD的中點(diǎn),則圖中平行四邊形的個(gè)數(shù)共有( ).
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三條線段長(zhǎng)分別為7,15,20,以其中一條為對(duì)角線,另兩條為鄰邊,可以畫出________個(gè)平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解市民“獲取新聞的最主要途徑”某市記者開(kāi)展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息解答下列問(wèn)題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是 ;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)扇形統(tǒng)計(jì)圖中,“電視”所對(duì)應(yīng)的圓心角的度數(shù)是 ;
(3)若該市約有90萬(wàn)人,請(qǐng)你估計(jì)其中將“電腦和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣8與x軸交于兩點(diǎn)A,B,與y軸交于點(diǎn)C,直線l經(jīng)過(guò)坐標(biāo)原點(diǎn)O,與拋物線的一個(gè)交點(diǎn)為點(diǎn)D,與拋物線的對(duì)稱軸交于點(diǎn)E,連接CE,已知點(diǎn)A,D的坐標(biāo)分別為(﹣2,0),(6,﹣8).
(1)求拋物線的函數(shù)表達(dá)式;
(2)求點(diǎn)E的坐標(biāo);
(3)試探究在x軸下方的拋物線上是否存在點(diǎn)F,使得△FOB和△EOB的面積相等,若存在,請(qǐng)求出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(4)若點(diǎn)P是y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),設(shè)其坐標(biāo)為(0,m),直線PB與直線l交于點(diǎn)Q,請(qǐng)直接寫出:當(dāng)m為何值時(shí),△OPQ是等腰三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com