【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的中點(diǎn),過點(diǎn)A作AD⊥AB交BE的延長線于點(diǎn)D,CG平分∠ACB交BD于點(diǎn)G,F(xiàn)為AB邊上一點(diǎn),連接CF,且∠ACF=∠CBG.求證:
(1)AF=CG;
(2)CF=2DE.
【答案】
(1)證明:∵∠ACB=90°,CG平分∠ACB,
∴∠ACG=∠BCG=45°,
又∵∠ACB=90°,AC=BC,
∴∠CAF=∠CBF=45°,
∴∠CAF=∠BCG,
在△AFC與△CGB中,
,
∴△AFC≌△CBG(ASA),
∴AF=CG;
(2)證明:延長CG交AB于H,
∵CG平分∠ACB,AC=BC,
∴CH⊥AB,CH平分AB,
∵AD⊥AB,
∴AD∥CG,
∴∠D=∠EGC,
在△ADE與△CGE中,
,
∴△ADE≌△CGE(AAS),
∴DE=GE,
即DG=2DE,
∵AD∥CG,CH平分AB,
∴DG=BG,
∵△AFC≌△CBG,
∴CF=BG,
∴CF=2DE.
【解析】(1)要證AF=CG,只需證明△AFC≌△CBG即可.(2)延長CG交AB于H,則CH⊥AB,H平分AB,繼而證得CH∥AD,得出DG=BG和△ADE與△CGE全等,從而證得CF=2DE.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰直角三角形的相關(guān)知識,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】谷歌人工智能AlphaGo機(jī)器人與李世石的圍棋挑戰(zhàn)賽引起人們的廣泛關(guān)注,人工智能完勝李世石.某教學(xué)網(wǎng)站開設(shè)了有關(guān)人工智能的課程并策劃了A,B兩種網(wǎng)上學(xué)習(xí)的月收費(fèi)方式:
收費(fèi) 方式 | 月使用費(fèi)(元) | 包時(shí)上網(wǎng) 時(shí)間(h) | 超時(shí)費(fèi)(元/min) |
A | 7 | 25 | 0.6 |
B | 10 | 50 | 0.8 |
設(shè)小明每月上網(wǎng)學(xué)習(xí)人工智能課程的時(shí)間為x小時(shí),方案A,B的收費(fèi)金額分別為yA元,yB元.
(1)當(dāng)x≥50時(shí),分別求出yA,yB與x之間的函數(shù)關(guān)系式;
(2)若小明3月份上該網(wǎng)站學(xué)習(xí)的時(shí)間為60小時(shí),則他選擇哪種方式上網(wǎng)學(xué)習(xí)合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=( )
A.
B.
C.
D. ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1 , 并直接寫出C1點(diǎn)坐標(biāo);
(2)以原點(diǎn)O為位似中心,位似比為1:2,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2 , 并直接寫出C2點(diǎn)坐標(biāo);
(3)如果點(diǎn)D(a,b)在線段AB上,請直接寫出經(jīng)過(2)的變化后點(diǎn)D的對應(yīng)點(diǎn)D2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).
(1)寫出點(diǎn)A、B的坐標(biāo):
(2)將△ABC先向左平移2個(gè)單位長度,再向上平移1個(gè)單位長度,得到△A′B′C′,則A′B′C′的三個(gè)頂點(diǎn)坐標(biāo)分別是A′(,)、B′(,)、C′(,).
(3)△ABC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明早晨跑步,他從自家向東跑了2千米到達(dá)小彬家,繼續(xù)向東跑了1.5千米到達(dá)小紅家,然后向西跑了4.5千米到達(dá)中心廣場,最后回到家.
(1)以小明家為原點(diǎn),以向東的方向?yàn)檎较,?/span>1 個(gè)單位長度表示1千米,你能在數(shù)軸上表示出中心廣場,小彬家和小紅家的位置嗎?
(2)小彬家距中心廣場多遠(yuǎn)?
(3)小明一共跑了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(2,0)和B(t,0)(t≥2),與y軸交于點(diǎn)C,直線l:y=x+2t經(jīng)過點(diǎn)C,交x軸于點(diǎn)D,直線AE交拋物線于點(diǎn)E,且有∠CAE=∠CDO,作CF⊥AE于點(diǎn)F.
(1)求∠CDO的度數(shù);
(2)求出點(diǎn)F坐標(biāo)的表達(dá)式(用含t的代數(shù)式表示);
(3)當(dāng)S△COD﹣S四邊形COAF=7時(shí),求拋物線解析式;
(4)當(dāng)以B,C,O三點(diǎn)為頂點(diǎn)的三角形與△CEF相似時(shí),請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲地與丙地由公路連接,乙地在甲、丙兩地之間,一輛汽車在下午1點(diǎn)鐘從離甲地10千米的M地出發(fā)向乙地勻速前進(jìn),15分鐘后離甲地20千米,當(dāng)汽車行駛到離甲地150千米的乙地時(shí),接到通知要在下午5點(diǎn)前趕到離乙地30千米的丙地.汽車若按原速能否按時(shí)到達(dá)?若能,是在幾點(diǎn)幾時(shí)到達(dá);若不能,車速應(yīng)提高到多少才能按時(shí)到達(dá)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com