(12分)如圖1所示,將一個邊長為2的正方形ABCD和一個長為2、寬為1的矩形CEFD拼在一起,構(gòu)成一個大的長方形ABEF.現(xiàn)將小長方形CEFD繞點C順時針旋轉(zhuǎn)至CE′F′D,旋轉(zhuǎn)角為

(1)當點D′恰好落在EF邊上時,則旋轉(zhuǎn)角α的值為________度;

(2)如圖2,G為BC中點,且0°<α<90°,求證:GD′=E′D;

(3)小長方形CEFD繞點C順時針旋轉(zhuǎn)一周的過程中,是否存在旋轉(zhuǎn)角α,使△DCD′與△CBD′全等?若能,直接寫出旋轉(zhuǎn)角α的值;若不能,說明理由.

(1)30;(2)證明見試題解析;(3)能.

【解析】

試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得到CD′的長,在Rt△CED′中,CD′=2,CE=1,得到∠CD′E=30°,然后根據(jù)平行線的性質(zhì)即可得到∠α的度數(shù);

(2)由G為BC中點可得CG=CE,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠D′CE′=∠DCE=90°,CE=CE′=CG,則∠GCD′=∠DCE′=90°+α,再根據(jù)“SAS”可判斷△GCD′≌△E′CD,得到GD′=E′D;

(3)根據(jù)正方形的性質(zhì)得CB=CD,而CD=CD′,則△BCD′與△DCD′為腰相等的兩等腰三角形,當兩頂角相等時它們?nèi)龋敗鰾CD′與△DCD′為鈍角三角形時,可計算出α=135°,當△BCD′與△DCD′為銳角三角形時,可計算得到α=315°.

試題解析:(1)∵長方形CEFD繞點C順時針旋轉(zhuǎn)至CE′F′D′,∴CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,∴∠CD′E=30°,∵CD∥EF,∴∠α=30°;

(2)∵G為BC中點,∴CG=1,∴CG=CE,∵長方形CEFD繞點C順時針旋轉(zhuǎn)至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG,∴∠GCD′=∠DCE′=90°+α,在△GCD′和△E′CD中,∵CD′=CD,∠GCD′=∠DCE′,CG=CE′,∴△GCD′≌△E′CD(SAS),∴GD′=E′D;

(3)能.理由如下:∵四邊形ABCD為正方形,∴CB=CD,∵CD′=CD′,∴△BCD′與△DCD′為腰相等的兩等腰三角形,當∠BCD′=∠DCD′時,△BCD′≌△DCD′,當△BCD′與△DCD′為鈍角三角形時,則旋轉(zhuǎn)角α==135°,

當△BCD′與△DCD′為銳角三角形時,∠BCD′=∠DCD′=∠BCD=45°,則α=360°﹣=315°,即旋轉(zhuǎn)角a的值為135°或315°時,△BCD′與△DCD′全等.

考點:1.旋轉(zhuǎn)的性質(zhì);2.全等三角形的判定與性質(zhì);3.矩形的性質(zhì);4.正方形的性質(zhì).

考點分析: 考點1:圖形的平移與旋轉(zhuǎn) 定義:
將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。平移是圖形變換的一種基本形式。平移不改變圖形的形狀和大小,平移可以不是水平的。 平移基本性質(zhì):
經(jīng)過平移,對應線段平行(或共線)且相等,對應角相等,對應點所連接的線段平行且相等;
平移變換不改變圖形的形狀、大小和方向(平移前后的兩個圖形是全等形)。
(1)圖形平移前后的形狀和大小沒有變化,只是位置發(fā)生變化;
(2)圖形平移后,對應點連成的線段平行(或在同一直線上)且相等
(3)多次連續(xù)平移相當于一次平移。
(4)偶數(shù)次對稱后的圖形等于平移后的圖形。
(5)平移是由方向和距離決定的。
這種將圖形上的所有點都按照某個方向作相同距離的位置移動,叫做圖形的平移運動,簡稱為平移
平移的條件:確定一個平移運動的條件是平移的方向和距離。 平移的三個要點
1 原來的圖形的形狀和大小和平移后的圖形是全等的。
2 平移的方向。(東南西北,上下左右,東偏南n度,東偏北n度,西偏南n度,西偏北n度)
3 平移的距離。(長度,如7厘米,8毫米等) 平移作用:
1.通過簡單的平移可以構(gòu)造精美的圖形。也就是花邊,通常用于裝飾,過程就是復制-平移-粘貼。
2.平移長于平行線有關,平移可以將一個角,一條線段,一個圖形平移到另一個位置,是分散的條件集中到一個圖形上,使問題得到解決。 平移作圖的步驟:
(1)找出能表示圖形的關鍵點;
(2)確定平移的方向和距離;
(3)按平移的方向和距離確定關鍵點平移后的對應點;
(4)按原圖的順序,連結(jié)各對應點。 試題屬性
  • 題型:
  • 難度:
  • 考核:
  • 年級:
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2014-2015學年黑龍江省大慶市九年級上學期期末檢測數(shù)學試卷(解析版) 題型:選擇題

如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm.現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,則CD等于( )

A.2cm B.3cm C.4cm D.5cm

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年河北省邯鄲市九年級第一次模擬考試數(shù)學試卷(解析版) 題型:選擇題

某籃球隊12名隊員的年齡如下表所示:

年齡(歲)

18

19

20

21

人數(shù)

5

4

1

2

則這12名隊員年齡的眾數(shù)和中位數(shù)分別是( )

A.18,19 B.18,19.5 C.5,4 D.5, 4.5

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年河北省邯鄲市九年級第一次模擬考試數(shù)學試卷(解析版) 題型:選擇題

如圖,AB∥CD,EF⊥AB于點E,EF交CD于點F,已知∠1=60°,則∠2的度數(shù)為( )

A.20° B.60° C.30° D.45°

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年福建省武夷山市九年級上學期期末質(zhì)量監(jiān)測數(shù)學試卷(解析版) 題型:解答題

(8分)如圖1,正方形ABCD是一個6×6網(wǎng)格電子屏的示意圖,其中每個小正方形的邊長為1.位于AD中點處的光點P按圖-2的程序移動.

(1)請在圖-1中畫出光點P經(jīng)過的路徑;

(2)求光點P經(jīng)過的路徑總長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年福建省武夷山市九年級上學期期末質(zhì)量監(jiān)測數(shù)學試卷(解析版) 題型:填空題

已知二次函數(shù)中,函數(shù)與自變量的部分對應值如下表:

-2

-1

0

1

2

-3

-4

-3

0

5

則此二次函數(shù)的對稱軸為 .

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年浙江省臺州市九年級上學期第一次月考數(shù)學試卷(解析版) 題型:解答題

已知關于的一元二次方程的兩個實數(shù)根為,

(1)求k的取值范圍。

(2)是否存在實數(shù)可k,使得成立?若存在,請求出k值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2014-2015學年云南省九年級上學期第一次月考數(shù)學試卷(解析版) 題型:選擇題

用配方法解方程,配方后的方程是( )

A、 B、

C、 D、

查看答案和解析>>

同步練習冊答案