【題目】如圖,點(diǎn)M(4,0),以點(diǎn)M為圓心,2為半徑的圓與x軸交于點(diǎn)A、B,已知拋物線y= x2+bx+c過點(diǎn)A和B,與y軸交于點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo),并畫出拋物線的大致圖象.
(2)點(diǎn)P為此拋物線對(duì)稱軸上一個(gè)動(dòng)點(diǎn),求PC﹣PA的最大值.
(3)CE是過點(diǎn)C的⊙M的切線,E是切點(diǎn),CE交OA于點(diǎn)D,求OE所在直線的函數(shù)關(guān)系式.

【答案】
(1)

解:由題意,得

A(2,0),B(6,0).

將A,B點(diǎn)坐標(biāo)代入函數(shù)解析式,得

,

解得

函數(shù)解析式為y═ x2 x+2,

當(dāng)x=0時(shí),y=2,即C點(diǎn)坐標(biāo)為(0,2),

圖象如圖1


(2)

解:由三角形的兩邊之差小于第三邊,得

PC﹣PA<CA,

當(dāng)時(shí)P,A,C在同一條直線上時(shí),PC﹣PA=AC =2 ,

即PC﹣PA的最大值是2


(3)

解:如圖2

連接MC,ME,

∵CE是過點(diǎn)C的⊙M的切線,E是切點(diǎn),

∴∠MED=∠COD=90°.

在△CDO和△MED中,

,

∴△CDO≌△MED(AAS),

DO=DE,DC=DM,

∠DEO=∠DOE,∠MCD=∠CMD.

∵∠DEO= ,∠MCD= ,

∴∠MCE=∠CEO,

∴CM∥OE,

∵直線CM的解析式為y=﹣ x+2,

∴直線OE的解析式為y=﹣ x


【解析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式,根據(jù)自變量與函數(shù)值得對(duì)應(yīng)關(guān)系,可得C點(diǎn)坐標(biāo);(2)根據(jù)三角形三邊的關(guān)系,可得PC﹣PA<CA,根據(jù)線段的和差,可得答案;(3)根據(jù)全等三角形的判定與性質(zhì),可得DO=DE,DC=DM,根據(jù)等腰三角形的性質(zhì),三角形的內(nèi)角和,可得∠MCE=∠CEO,根據(jù)平行線的判定與性質(zhì),可得答案.
【考點(diǎn)精析】本題主要考查了平行線的判定與性質(zhì)和三角形三邊關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì);三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在菱形ABCD中,E是CD上的一點(diǎn),連接BE交AC于O,連接DO并延長(zhǎng)交BC于E.

(1)求證:△FOC≌△EOC;
(2)將此圖中的AD、BE分別延長(zhǎng)交于點(diǎn)N,作EM∥BC交CN于M,再連接FM即得到圖2.
求證:①;②FD=FM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某報(bào)社為了解市民對(duì)“社會(huì)主義核心價(jià)值觀”的知曉程度,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個(gè)等級(jí),并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

(1)這次調(diào)查的市民人數(shù)為人,m= , n=
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該市約有市民100000人,請(qǐng)你根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)該市大約有多少人對(duì)“社會(huì)主義核心價(jià)值觀”達(dá)到“A.非常了解”的程度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,規(guī)定:拋物線y=a(x﹣h)2+k的伴隨直線為y=a(x﹣h)+k.例如:拋物線y=2(x+1)2﹣3的伴隨直線為y=2(x+1)﹣3,即y=2x﹣1.
(1)在上面規(guī)定下,拋物線y=(x+1)2﹣4的頂點(diǎn)坐標(biāo)為 , 伴隨直線為 , 拋物線y=(x+1)2﹣4與其伴隨直線的交點(diǎn)坐標(biāo)為;
(2)如圖,頂點(diǎn)在第一象限的拋物線y=m(x﹣1)2﹣4m與其伴隨直線相交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的右側(cè)),與x軸交于點(diǎn)C,D.
①若∠CAB=90°,求m的值;
②如果點(diǎn)P(x,y)是直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn),△PBC的面積記為S,當(dāng)S取得最大值 時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】桌子上放著背面完全相同的4張撲克牌,其中有一張大王,小明和小紅玩“抽大王”游戲,兩人各抽取一次(每次都不放回),抽到大王者獲勝,小明先抽,小紅后抽,求小紅獲勝的概率.(請(qǐng)用“畫樹狀圖”或“列表”等方法,寫出分析過程,并給出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC邊上的一個(gè)動(dòng)點(diǎn),連接AD,過點(diǎn)C作CE⊥AD于E,連接BE,在點(diǎn)D變化的過程中,線段BE的最小值是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國(guó)家支持大學(xué)生創(chuàng)新辦實(shí)業(yè),提供小額無息貸款.學(xué)生王亮享受國(guó)家政策貸款36000元用于代理某品牌服裝銷售,已知該店代理的品牌服裝的進(jìn)價(jià)為每件40元,該品牌服裝日銷售量y(件)與銷售價(jià)x(元/件)之間的關(guān)系可用圖中的一條線段(實(shí)線)來表示.該店應(yīng)支付員工的工資為每人每天82元,每天還應(yīng)支付其它費(fèi)用為106元(不包含貸款).
(1)求日銷售量y(件)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式;
(2)若該店暫不考慮償還貸款,當(dāng)某天的銷售價(jià)為48元/件時(shí),當(dāng)天正好收支平衡(銷售額﹣成本=支出),求該店員工的人數(shù);
(3)若該店只有2名員工,則該店至少需要多少天能還清所有貸款?此時(shí)每件服裝的價(jià)格應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D在邊AB上,連接CD,將△BCD沿CD翻折得到△ECD,使DE∥AC,CE交AB于點(diǎn)F,若∠B=α,則∠ADC的度數(shù)是 (用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,tanA= ,點(diǎn)D是邊AC上一點(diǎn),連接BD,并將△BCD沿BD折疊,使點(diǎn)C恰好落在邊AB上的點(diǎn)E處,過點(diǎn)D作DF⊥BD,交AB于點(diǎn)F.

(1)求證:∠ADF=∠EDF;
(2)探究線段AD,AF,AB之間的數(shù)量關(guān)系,并說明理由;
(3)若EF=1,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案