【題目】如圖,點(diǎn)分別在正三角形的三邊上,且也是正三角形.若的邊長(zhǎng)為,的邊長(zhǎng)為,則的內(nèi)切圓半徑為__________

【答案】

【解析】

根據(jù)ABC、EFD都是等邊三角形,可證得AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據(jù)切線長(zhǎng)定理得到AH=AE+AF-EF=a-b);,再根據(jù)直角三角形的性質(zhì)即可求出AEF的內(nèi)切圓半徑.

解:如圖1,⊙IABC的內(nèi)切圓,由切線長(zhǎng)定理可得:AD=AE,BD=BF,CE=CF,

AD=AE=[AB+AC-BD+CE]= [AB+AC-BF+CF]=AB+AC-BC),

如圖2,∵ABCDEF都為正三角形,

AB=BC=CA,EF=FD=DE,∠BAC=B=C=FED=EFD=EDF=60°,
∴∠1+2=2+3=120°,∠1=3
AEFCFD中,


∴△AEF≌△CFDAAS);
同理可證:AEF≌△CFD≌△BDE
BE=AF,即AE+AF=AE+BE=a
設(shè)MAEF的內(nèi)心,過(guò)點(diǎn)MMHAEH
則根據(jù)圖1的結(jié)論得:AH=AE+AF-EF=a-b);
MA平分∠BAC
∴∠HAM=30°;
HM=AHtan30°=a-b=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,是角平分線,是中線,于點(diǎn)G,交于點(diǎn)F,交于點(diǎn)M,的延長(zhǎng)線交于點(diǎn)H

(1)圖中與線段相等的線段是________;

(2)求證:點(diǎn)H為線段的中點(diǎn);

(3),探究線段之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy 中,點(diǎn)PC外一點(diǎn),連接CPC于點(diǎn)Q,點(diǎn)P關(guān)于點(diǎn)Q的對(duì)稱點(diǎn)為P′,當(dāng)點(diǎn)P′在線段CQ上時(shí),稱點(diǎn)PC“友好點(diǎn)”.已知A1,0),B0,2),C3,3

1)當(dāng)O的半徑為1時(shí),

點(diǎn)A,BC中是O“友好點(diǎn)”的是   ;

已知點(diǎn)M在直線y=﹣x+2 上,且點(diǎn)MO“友好點(diǎn)”,求點(diǎn)M的橫坐標(biāo)m的取值范圍;

2)已知點(diǎn)D,連接BC,BD,CD,T的圓心為Tt,﹣1),半徑為1,若在△BCD上存在一點(diǎn)N,使點(diǎn)NT“友好點(diǎn)”,求圓心T的橫坐標(biāo)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=-1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2-4ac0;③ab0;④a2-ab+ac0,其中正確的結(jié)論有( 。﹤(gè).

A. 3B. 4C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn) M,N;②作直線 MN AB 于點(diǎn) D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為

A.90°B.95°C.105°D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形AOBC是正方形,點(diǎn)C的坐標(biāo)是(4,0).

(Ⅰ)正方形AOBC的邊長(zhǎng)為   ,點(diǎn)A的坐標(biāo)是   

(Ⅱ)將正方形AOBC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)45°,點(diǎn)A,BC旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′,B′,C′,求點(diǎn)A′的坐標(biāo)及旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積;

(Ⅲ)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線OACB方向以1個(gè)單位/秒的速度勻速運(yùn)動(dòng),同時(shí),另一動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿折線OBCA方向以2個(gè)單位/秒的速度勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)它們相遇時(shí)同時(shí)停止運(yùn)動(dòng),當(dāng)△OPQ為等腰三角形時(shí),求出t的值(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線,點(diǎn)A為切點(diǎn),BP與⊙O交于點(diǎn)C,點(diǎn)DAP的中點(diǎn),連結(jié)CD.

(1)求證:CD是⊙O的切線;

(2)若AB=2,P=30°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三根同樣的繩子AA1、BB1CC1穿過(guò)一塊木板,姐妹兩人分別站在木板的左、右兩側(cè),每次各自選取本側(cè)的一根繩子,每根繩子被選中的機(jī)會(huì)相等.

1)問(wèn):姐妹兩人同時(shí)選中同一根繩子這一事件是   事件,概率是  

2)在互相看不見(jiàn)的條件下,姐姐先將左側(cè)A、C兩個(gè)繩端打成一個(gè)連結(jié),則妹妹從右側(cè)A1、B1C1三個(gè)繩端中隨機(jī)選兩個(gè)打一個(gè)結(jié)(打結(jié)后仍能自由地通過(guò)木孔);請(qǐng)求出姐姐抽動(dòng)繩端B,能抽出由三根繩子連結(jié)成一根長(zhǎng)繩的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:四邊形ABCD是平行四邊形,兩邊ABAD的長(zhǎng)是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.

1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?

2)求出此時(shí)菱形ABCD的邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案