【題目】中,,,將繞點(diǎn)按順時(shí)針旋轉(zhuǎn)得到,連接,,它們交于點(diǎn),
①求證:.
②當(dāng),求的度數(shù).
③當(dāng)四邊形是菱形時(shí),求的長(zhǎng).
【答案】①證明見(jiàn)解析; ②;③.
【解析】
①先利用旋轉(zhuǎn)的性質(zhì)得AE=AB,AF=AC,∠EAF=∠BAC,則根據(jù)“SAS”證明△AEB≌△AFC,于是得到BE=CF;
②利用∠FAC=120°,AF=AC可得到∠ACF=30°,再利用AB=AC,∠BAC=45°得到∠ACB=67.5°,然后計(jì)算∠BCF;
③利用四邊形ACDE是菱形得到AC∥DE,DE=AE=AC=1,則∠ABE=∠BAC=45°,于是可判斷△ABE為等腰直角三角形,所以BE=AB=,然后計(jì)算BE-DE即可.
解:①證明:∵繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)角得到,
∴,,,
∴,
,即,
在和中,
,
∴,
∴;
②解:∵,
∴,
而,
∴,
∵,,
∴,
∴;
③解:∵四邊形是菱形,
∴,,
∴,
而,
∴為等腰直角三角形,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列圖形中有大小不同的平行四邊形,第一幅圖中有1個(gè)平行四邊形,第二幅圖中有3個(gè)平行四邊形,第三幅圖中有5個(gè)平行四邊形,則第6幅和第7幅圖中合計(jì)有( )個(gè)平行四邊形
A.22B.24C.26D.28
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,城南中學(xué)八年級(jí)學(xué)習(xí)小組發(fā)現(xiàn):當(dāng)角平分線遇上平行線會(huì)出現(xiàn)等腰三角形。例如:圖①,在四邊形ABCD中,BE平分∠ABC,AD//BC,易得△ABE是等腰三角形。該小組將此結(jié)論作拓展:如圖②,四邊形ABCD中, BE平分∠BCD,CF平分∠ABC ,AD//BC,AB=CD=3,AD=4,則EF=________。如圖③,如圖,在長(zhǎng)方形ABCD中,AB=3,BC=5,點(diǎn)E在邊AD上,連接BE,△EAB沿BE翻折得到△EA1B,延長(zhǎng)交BC于點(diǎn)F,若四邊形EFCD的周長(zhǎng)為11,則EF=________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD⊥BC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且BD=DE.
⑴若∠BAE=40°,求∠C的度數(shù);
⑵若△ABC周長(zhǎng)13cm,AC=6cm,求DC長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE.
(1)求證:△ACD≌△CBE.
(2)若AD=6.8,DE=4.5,求BE的長(zhǎng)度
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形網(wǎng)格中,每個(gè)小格的頂點(diǎn)叫做格點(diǎn).當(dāng)所作正方形邊上的點(diǎn)剛好在格點(diǎn)上的點(diǎn)稱為整點(diǎn).如圖中四條邊上的整點(diǎn)共有個(gè);四條邊上的整點(diǎn)共有個(gè).請(qǐng)你觀察圖中正方形四條邊上的整點(diǎn)的個(gè)數(shù)…按此規(guī)律,推算出正方形四條邊上的整點(diǎn)共有________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,拋物線y=ax2+2ax+c與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)當(dāng)a>0時(shí),如圖所示,若點(diǎn)D是第三象限方拋物線上的動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m,三角形ADC的面積為S,求出S與m的函數(shù)關(guān)系式,并直接寫(xiě)出自變量m的取值范圍;請(qǐng)問(wèn)當(dāng)m為何值時(shí),S有最大值?最大值是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,是的中點(diǎn)。在射線上任意取一點(diǎn),連接,將線段繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)80°,點(diǎn)的對(duì)應(yīng)點(diǎn)是點(diǎn),連接.
(1)如圖1,當(dāng)點(diǎn)落在射線上時(shí),
①_________________°;
②直線與直線的位置關(guān)系是______________________。
(2)如圖2,當(dāng)點(diǎn)落在射線的左側(cè)時(shí),試判斷直線與直線的位置關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com