如圖,拋物線經(jīng)過(guò)A、B、C三點(diǎn),頂點(diǎn)為D,且與x軸的另一個(gè)交點(diǎn)為E.
(1)求拋物線的解析式;
(2)求四邊形ABCD的面積;
(3)判斷△AOB與△BDE是否相似?如果相似,請(qǐng)予證明;如果不相似,請(qǐng)說(shuō)明理由.

【答案】分析:(1)運(yùn)用待定系數(shù)法,直接代入y=ax2+bx+c可以求出二次函數(shù)解析式;
(2)可以運(yùn)用配方法求出二次函數(shù)的頂點(diǎn)坐標(biāo),再將四邊形分割成2個(gè)三角形,可以得出面積;
(3)利用勾股定理得出BD與DE的長(zhǎng),根據(jù)勾股定理的逆定理,得出∠BDE=90°,再利用兩邊對(duì)應(yīng)成比例,且?jiàn)A角相等,得出三角形相似.
解答:解:(1)設(shè)拋物線的解析式為y=ax2+bx+c(a≠0),將點(diǎn)A(-1,0)、B(0,3)、C(2,3)三點(diǎn)坐標(biāo)代入,

,
∴拋物線的解析式為y=-x2+2x+3.

(2)如圖,設(shè)對(duì)稱軸交x軸于點(diǎn)F,連接BF,
y=-x2+2x+3=-(x-1)2+4,
∴頂點(diǎn)D的坐標(biāo)為(1,4),F(xiàn)的坐標(biāo)為(1,0).
∴S四邊形ABCD=S△ABC+S△BDC=BC•HF+BC•DH=×2×1+×2×3=4;

(3)△AOB與△BDE相似.
證明:∵BD==,BE==3,
DE===2,
∴BD2+BE2=2+18=20=DE2
∴∠DBE=90°,
在Rt△AOB中,OA=1,OB=3,

∴△AOB∽△DBE.
點(diǎn)評(píng):此題主要考查了待定系數(shù)法求二次函數(shù)解析式以及分割四邊形求面積和相似三角形的判定等知識(shí),考查內(nèi)容比較全面,而且考查知識(shí)都是中考中熱點(diǎn)問(wèn)題,同學(xué)們應(yīng)熟練地應(yīng)用這些知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線經(jīng)過(guò)A(4,0),B(1,0),C(0,-2)三點(diǎn).
(1)求出拋物線的解析式;
(2)P是拋物線上一動(dòng)點(diǎn),過(guò)P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在直線AC上方的拋物線上有一點(diǎn)D,使得△DCA的面積最大,求出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:拋物線經(jīng)過(guò)A(-3,0)、B(0,4)、C(4,0)三點(diǎn),
(1)求拋物線的解析式;
(2)求該拋物線的頂點(diǎn)坐標(biāo)以及最值;
(3)已知AD=AB(D在線段AC上),有一動(dòng)點(diǎn)P從點(diǎn)A沿線段AC以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng);同時(shí)另一個(gè)動(dòng)點(diǎn)Q以某一速度從點(diǎn)B沿線段BC移動(dòng),經(jīng)過(guò)t秒的移動(dòng),線段PQ被BD垂直平分,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•蘇州一模)如圖,拋物線經(jīng)過(guò)A,C,D三點(diǎn),且三點(diǎn)坐標(biāo)為A(-1,0),C(0,5),D(2,5),拋物線與x軸的另一個(gè)交點(diǎn)為B點(diǎn),點(diǎn)F為y軸上一動(dòng)點(diǎn),作平行四邊形DFBG,
(1)B點(diǎn)的坐標(biāo)為
(3,0)
(3,0)
;
(2)是否存在F點(diǎn),使四邊形DFBG為矩形?如存在,求出F點(diǎn)坐標(biāo);如不存在,說(shuō)明理由;
(3)連結(jié)FG,F(xiàn)G的長(zhǎng)度是否存在最小值?如存在求出最小值;若不存在說(shuō)明理由;
(4)若E為AB中點(diǎn),找出拋物線上滿足到E點(diǎn)的距離小于2的所有點(diǎn)的橫坐標(biāo)x的范圍:
-1<x<
5-
91
5
5+
91
5
<x<3
-1<x<
5-
91
5
5+
91
5
<x<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•高要市二模)已知:如圖,拋物線經(jīng)過(guò)點(diǎn)O、A、B三點(diǎn),四邊形OABC是直角梯形,其中點(diǎn)A在x軸上,點(diǎn)C在y軸上,BC∥OA,A(12,0)、B(4,8).
(1)求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)D為OA的中點(diǎn),動(dòng)點(diǎn)P自A點(diǎn)出發(fā)沿A→B→C→O的路線移動(dòng),若線段PD將梯形OABC的面積分成1﹕3兩部分,求此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線經(jīng)過(guò)A(-2,0)、B(8,0)兩點(diǎn),與y軸正半軸交與點(diǎn)C,且AB=BC,點(diǎn)P為第一象限內(nèi)拋物線上一動(dòng)點(diǎn)(不與B、C重合),設(shè)點(diǎn)P的坐標(biāo)為(m,n).
(1)求拋物線的解析式;
(2)點(diǎn)D在BC上,且PD∥y軸,探索
BD•DCPD
的值;
(3)設(shè)拋物線的對(duì)稱軸為l,若以點(diǎn)P為圓心的⊙P與直線BC相切,請(qǐng)寫(xiě)出⊙P的半徑R關(guān)于m函數(shù)關(guān)系式,并判斷⊙P與直線l的位置關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案