【題目】如圖,□ABCD中,E是BC邊的中點(diǎn),連接AE,F為CD邊上一點(diǎn),且滿足∠DFA=2∠BAE.
(1)若∠D=105°,∠DAF=35°.求∠FAE的度數(shù);
(2)求證:AF=CD+CF.
【答案】(1)20°;(2)見解析
【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)、平行線的性質(zhì)證得;然后結(jié)合已知條件求得從而求得的度數(shù);
(2)在AF上截取連接利用全等三角形的判定定理SAS證得 ≌,由全等三角形的對(duì)應(yīng)角相等、對(duì)應(yīng)邊相等;然后由中點(diǎn)E的性質(zhì)平行線的性質(zhì)以及等腰三角形的判定與性質(zhì)求得 最后根據(jù)線段間的和差關(guān)系證得結(jié)論.
試題解析:
(三角形內(nèi)角和定理).
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD(平行四邊形對(duì)邊平行且相等).
(兩直線平行,內(nèi)錯(cuò)角相等);
(已知),
(等量代換).
即
(2) 證明:在AF上截取連接
∴ ≌,
<>又∵E為BC中點(diǎn),
∵AB∥CD,
又
又
又
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠D=110°,∠EFD=70°,∠1=∠2,求證:∠3=∠B
證明:
∵∠D=110°,∠EFD=70°(已知)
∴∠D+∠EFD=180°
∴AD∥EF( )
又∵∠1=∠2(已知)
∴ ∥ (內(nèi)錯(cuò)角相等,兩直線平行)
∴EF∥BC( )
∴∠3=∠B( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為平行四邊形ABCD的邊AD上的一點(diǎn),E,F(xiàn)分別為PB,PC的中點(diǎn),△PEF,△PDC,△PAB的面積分別為S,S1,S2.若S=3,則S1+S2的值為( )
A.24 B.12 C.6 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形中,一個(gè)內(nèi)角α是另一個(gè)內(nèi)角β的兩倍時(shí),我們稱此三角形是“特征三角形”,其中α為“特征角”.如果一個(gè)“特征三角形”的“特征角”為102°,那么這個(gè)“特征三角形”的最小內(nèi)角為___________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落下點(diǎn)C1處;作∠BPC1的平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.同位角相等
B.同一平面內(nèi)的兩條不重合的直線有相交、平行和垂直三種位置關(guān)系
C.三角形的三條高線一定交于三角形內(nèi)部同一點(diǎn)
D.三角形三條角平分線的交點(diǎn)到三角形三邊的距離相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校260名學(xué)生參加植樹活動(dòng),要求每人植4﹣7棵,活動(dòng)結(jié)束后隨機(jī)抽查了20名學(xué)生每人的植樹量,并分為四種類型,A:4棵;B:5棵;C:6棵;D:7棵,將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2).
回答下列問題:
(1)補(bǔ)全條形圖;
(2)寫出這20名學(xué)生每人植樹量的眾數(shù)、中位數(shù);
(3)請(qǐng)你計(jì)算平均數(shù),并估計(jì)這260名學(xué)生共植樹多少棵?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com