【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線與反比例函數(shù)k0)的圖象交于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)Bx軸正半軸上一點(diǎn),且ABOA

1)求反比例函數(shù)的解析式;

2)求點(diǎn)B的坐標(biāo);

3)先在∠AOB的內(nèi)部求作點(diǎn)P,使點(diǎn)P到∠AOB的兩邊OA、OB的距離相等,且PA=PB;再寫出點(diǎn)P的坐標(biāo).(不寫作法,保留作圖痕跡,在圖上標(biāo)注清楚點(diǎn)P

【答案】1;(2)(4,0);(3)作圖見(jiàn)解析,P3,).

【解析】

(1)利用待定系數(shù)法先求出點(diǎn)A縱坐標(biāo),再求出反比例系數(shù)k即可.

(2)過(guò)點(diǎn)AACOB⊥,垂足為點(diǎn)C.在Rt△AOC中先求出OA,再在Rt△AOB中求出OB即可解決問(wèn)題.

(3)畫出∠AOB的平分線OM,線段AB的垂直平分線EFOMEF的交點(diǎn)就是所求的點(diǎn)P,設(shè)點(diǎn)Pm,m),根據(jù)PA2=PB2,列出方程即可解決問(wèn)題.

(1)由題意,設(shè)點(diǎn)A的坐標(biāo)為(1,m).

∵點(diǎn)A在正比例函數(shù)yx的圖象上,∴m.∴點(diǎn)A的坐標(biāo)(1,).

∵點(diǎn)A在反比例函數(shù)y的圖象上,∴,解得:k,∴反比例函數(shù)的解析式為y

(2)過(guò)點(diǎn)AACOBC,可得:OC=1,AC

ACOB,∴∠ACO=90°.

由勾股定理,得:AO=2,∴OCAO,∴∠OAC=30°,∴∠AOC=60°.

ABOA,∴∠OAB=90°,∴∠ABO=30°,∴OB=2OA,∴OB=4,∴點(diǎn)B的坐標(biāo)是(4,0).

(3)如圖,作∠AOB的平分線OM,AB的垂直平分線EF,OMEF的交點(diǎn)就是所求的點(diǎn)P

∵∠POB=30°,∴可以設(shè)點(diǎn)P坐標(biāo)(m,m).

PA2=PB2,∴(m﹣1)2+(2=(m﹣4)2+(m2,解得:m=3,∴點(diǎn)P的坐標(biāo)是(3,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)解方程:x2+8x﹣9=0(用配方法)

(2)解方程:3(x﹣2)x=4x﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣2,3).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長(zhǎng)度至點(diǎn)F,連接AF、BF,求△ABF的面積.

3)根據(jù)圖象,直接寫出不等式﹣x+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,點(diǎn)EAC的中點(diǎn).

(1)試判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若⊙O的半徑為2,B=50°,AC=4.8,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象如圖,其對(duì)稱軸為直線,給出下列結(jié)論:;②;③;④,則正確的結(jié)論個(gè)數(shù)為(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的弦,C為弦AB上一點(diǎn),設(shè)AC=m,BC=nmn),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過(guò)的面積為(m2n2)π,則=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加全國(guó)比賽,對(duì)他們進(jìn)行了8次測(cè)試,測(cè)試成績(jī)(單位:環(huán))如下表:

第一次

第二次

第三次

第四次

第五次

第六次

第七次

第八次

10

8

9

8

10

9

10

8

10

7

10

10

9

8

8

10

1)根據(jù)表格中的數(shù)據(jù),計(jì)算出甲的平均成績(jī)是 環(huán),乙的平均成績(jī)是 環(huán);

2)分別計(jì)算甲、乙兩名運(yùn)動(dòng)員8次測(cè)試成績(jī)的方差;

3)根據(jù)(1)(2)計(jì)算的結(jié)果,你認(rèn)為推薦誰(shuí)參加全國(guó)比賽更合適,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線與x軸交于Ax1,0)、Bx2,0)兩點(diǎn),且x1x2y軸交于點(diǎn)C04),其中x1,x2是方程x2﹣4x﹣12=0的兩個(gè)根.

1)求拋物線的解析式;

2)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)MMN∥BC,交AC于點(diǎn)N,連結(jié)CM,當(dāng)△CMN的面積最大時(shí),求點(diǎn)M的坐標(biāo);

3)點(diǎn)D4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以AD、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ACCB,OAB的中點(diǎn),CA與⊙O相切于點(diǎn)E,CO交⊙O于點(diǎn)D

1)求證:CB是⊙O的切線;

2)若∠ACB80°,點(diǎn)P是⊙O上一個(gè)動(dòng)點(diǎn)(不與D,E兩點(diǎn)重合),求∠DPE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案