在△OAB中,O為坐標(biāo)原點(diǎn),橫、縱軸的單位長度相同,A、B的坐標(biāo)分別為(8,6),(16,0),點(diǎn)P沿OA邊從點(diǎn)O開始向終點(diǎn)A運(yùn)動,速度每秒1個單位,點(diǎn)Q沿BO邊從B點(diǎn)開始向終點(diǎn)O運(yùn)動,速度每秒2個單位,如果P、Q同時出發(fā),用t(秒)表示移動時間,當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時,另一點(diǎn)也停止運(yùn)動.
求:(1)幾秒時PQ∥AB;
(2)設(shè)△OPQ的面積為y,求y與t的函數(shù)關(guān)系式.
分析:(1)由兩點(diǎn)間的距離公式求得AO=10,然后根據(jù)平行線PQ∥AB分線段成比例知
OP
OA
=
OQ
OB
,據(jù)此列出關(guān)于t的方程,并解方程;
(2)過P作PC⊥OB,垂足為C,過A作AD⊥OB,垂足為D.構(gòu)造平行線PC∥AQ,根據(jù)平行線分線段成比例及三角形的面積公式求得關(guān)于y與t的函數(shù)關(guān)系式;
解答:解:(1)由已知得OA=
82+62
=10
,
當(dāng)PQ∥AB時,
OP
OA
=
OQ
OB
,
則:
t
10
=
16-2t
16
,得:t=
40
9

所以
40
9
秒時PQ∥AB;

(2)過P作PC⊥OB,垂足為C,過A作AD⊥OB,垂足為D.則
PC
AD
=
OP
OA
,
PC
6
=
t
10
,
∴PC=
3
5
t
,y=
1
2
OQ,PC=
1
2
(16-2t),
3
5
t=-
3
5
t2
+
24
5
t;
∴y=-
3
5
t2
+
24
5
t;
點(diǎn)評:本題綜合考查了相似三角形的判定與性質(zhì)、平行線分線段成比例及勾股定理的應(yīng)用.解答此題的關(guān)鍵是通過作輔助線PC⊥OB,AD⊥OB構(gòu)造平行線PC∥AQ,然后利用平行線分線段成比例來求出相關(guān)線段的長度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖:點(diǎn)A(1,1),點(diǎn)B在坐軸上,試以O(shè)A為邊,使三角形OAB為等腰三角形,試在圖中畫這個等腰三角形并求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,如圖:點(diǎn)A(1,1),點(diǎn)B在坐軸上,試以O(shè)A為邊,使三角形OAB為等腰三角形,試在圖中畫這個等腰三角形并求點(diǎn)B的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案