(2001•黑龍江)某商場(chǎng)計(jì)劃撥款9萬(wàn)元從廠家購(gòu)進(jìn)50臺(tái)電視機(jī).已知該廠家生產(chǎn)三種不同型號(hào)的電視機(jī),出廠價(jià)分別為:甲種每臺(tái)1500元,乙種每臺(tái)2100元,丙種每臺(tái)2500元.
(1)若商場(chǎng)同時(shí)購(gòu)進(jìn)其中兩種不同型號(hào)電視機(jī)共50臺(tái),用去9萬(wàn)元,請(qǐng)研究一下商場(chǎng)的進(jìn)貨方案;
(2)若商場(chǎng)銷售一臺(tái)甲種電視機(jī)可獲利150元,銷售一臺(tái)乙種電視機(jī)可獲利200元,銷售一臺(tái)丙種電視機(jī)可獲利250元.在同時(shí)購(gòu)進(jìn)兩種不同型號(hào)電視機(jī)的方案中,為使銷售時(shí)獲利最多,你選擇哪種進(jìn)貨方案;
(3)若商場(chǎng)準(zhǔn)備用9萬(wàn)元同時(shí)購(gòu)進(jìn)三種不同的電視機(jī)50臺(tái),請(qǐng)你設(shè)計(jì)進(jìn)貨方案.
【答案】分析:(1)本題的等量關(guān)系是:兩種電視的臺(tái)數(shù)和=50臺(tái),買兩種電視花去的費(fèi)用=9萬(wàn)元.然后分進(jìn)的兩種電視是甲乙,乙丙,甲丙三種情況進(jìn)行討論.求出正確的方案;
(2)根據(jù)(1)得出的方案,分別計(jì)算出各方案的利潤(rùn),然后判斷出獲利最多的方案;
(3)本題可先設(shè)兩種電視的數(shù)量為未知數(shù),然后根據(jù)三種電視的總量為50臺(tái),表示出另一種電視的數(shù)量,然后根據(jù)購(gòu)進(jìn)電視的費(fèi)用總和為9萬(wàn)元,得出所設(shè)的兩種電視的二元一次方程,然后根據(jù)自變量的取值范圍,得出符合條件的方案.
解答:解:(1)設(shè)購(gòu)進(jìn)甲種x臺(tái),乙種y臺(tái).
則有:,
解得;
設(shè)購(gòu)進(jìn)乙種a臺(tái),丙種b臺(tái).
則有:,
解得;(不合題意,舍去此方案)
設(shè)購(gòu)進(jìn)甲種c臺(tái),丙種e臺(tái).
則有:,
解得:
通過(guò)列方程組解得有以下兩種方案成立:
①甲、乙兩種型號(hào)的電視機(jī)各購(gòu)25臺(tái).
②甲種型號(hào)的電視機(jī)購(gòu)35臺(tái),丙種型號(hào)的電視機(jī)購(gòu)15臺(tái);
(2)方案①獲利為:25×150+25×200=8750(元);
方案②獲利為:35×150+15×250=9000(元).
所以為使銷售時(shí)獲利最多,應(yīng)選擇第②種進(jìn)貨方案;
(3)設(shè)購(gòu)進(jìn)甲種電視x臺(tái),乙種電視y臺(tái),則購(gòu)進(jìn)丙種電視的數(shù)量為:z=(50-x-y)臺(tái).
1500x+2100y+2500(50-x-y)=90000,
化簡(jiǎn)整理,得5x+2y=175.
又因?yàn)?<x、y、z<50,且均為整數(shù),
所以上述二元一次方程只有四組解:
x=27,y=20,z=3;
x=29,y=15,z=6;
x=31,y=10,z=9;
x=33,y=5,z=12.
因此,有四種進(jìn)貨方案:
1、購(gòu)進(jìn)甲種電視27臺(tái),乙種電視20臺(tái),丙種電視3臺(tái),
2、購(gòu)進(jìn)甲種電視29臺(tái),乙種電視15臺(tái),丙種電視6臺(tái),
3、購(gòu)進(jìn)甲種電視31臺(tái),乙種電視10臺(tái),丙種電視9臺(tái),
4、購(gòu)進(jìn)甲種電視33臺(tái),乙種電視5臺(tái),丙種電視12臺(tái).
點(diǎn)評(píng):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系:兩種電視的臺(tái)數(shù)和=50臺(tái),買兩種電視花去的費(fèi)用=9萬(wàn)元.列出方程組,再求解.要注意本題中自變量的取值范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2001•黑龍江)如圖,在同一直角坐標(biāo)系內(nèi),直線l1:y=(k-2)x+k,和l2:y=kx的位置可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2001•黑龍江)如圖,在平行四邊形ABCD中,AB=4cm,BC=1cm,E是CD邊上一動(dòng)點(diǎn),AE、BC的延長(zhǎng)線交于點(diǎn)F.設(shè)DE=x(cm),BF=y(cm).
(1)求y(cm)與x(cm)之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)畫(huà)出此函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(2001•黑龍江)如圖,直徑為13的⊙O′經(jīng)過(guò)原點(diǎn)O,并且與x軸、y軸分別交于A、B兩點(diǎn),線段OA、OB(OA>OB)的長(zhǎng)分別是方程x2+kx+60=0的兩根.
(1)求線段OA、OB的長(zhǎng);
(2)已知點(diǎn)C在劣弧OA上,連接BC交OA于D,當(dāng)OC2=CD•CB時(shí),求C點(diǎn)的坐標(biāo);
(3)在(2)問(wèn)的條件下,在⊙O′上是否存在點(diǎn)P,使S△POD=S△ABD?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(03)(解析版) 題型:解答題

(2001•黑龍江)如圖,直徑為13的⊙O′經(jīng)過(guò)原點(diǎn)O,并且與x軸、y軸分別交于A、B兩點(diǎn),線段OA、OB(OA>OB)的長(zhǎng)分別是方程x2+kx+60=0的兩根.
(1)求線段OA、OB的長(zhǎng);
(2)已知點(diǎn)C在劣弧OA上,連接BC交OA于D,當(dāng)OC2=CD•CB時(shí),求C點(diǎn)的坐標(biāo);
(3)在(2)問(wèn)的條件下,在⊙O′上是否存在點(diǎn)P,使S△POD=S△ABD?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2001•黑龍江)拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)(1,0),(-1,-6),(2,6),則該拋物線與y軸交點(diǎn)的縱坐標(biāo)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案