如圖,四邊形ABCD為正方形.點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B的坐標(biāo)為(0,-3),反比例函數(shù)的圖象經(jīng)過點(diǎn)C,一次函數(shù)的圖象經(jīng)過點(diǎn)C,一次函數(shù)的圖象經(jīng)過點(diǎn)A,

(1)求反比例函數(shù)與一次函數(shù)的解析式;

(2)求點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),△OAP的面積恰好等于正方形ABCD的面積,求P點(diǎn)的坐標(biāo).

 

【答案】

解:(1)∵點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B的坐標(biāo)為(0,-3),∴AB=5。

∵四邊形ABCD為正方形,∴點(diǎn)C的坐標(biāo)為(5,-3)。

∵反比例函數(shù)的圖象經(jīng)過點(diǎn)C,∴,解得k=-15。

∴反比例函數(shù)的解析式為。

∵一次函數(shù)的圖象經(jīng)過點(diǎn)A,C,∴,解得。

∴一次函數(shù)的解析式為

(2)設(shè)P點(diǎn)的坐標(biāo)為(x,y).

∵△OAP的面積恰好等于正方形ABCD的面積,∴,即

解得x=±25。

當(dāng)x=25時,;當(dāng)x=﹣25時,。

∴P點(diǎn)的坐標(biāo)為(25,)或(﹣25,)。

【解析】(1)根據(jù)正方形的性質(zhì)求出點(diǎn)C的坐標(biāo)為(5,-3),再將C點(diǎn)坐標(biāo)代入反比例函數(shù)中,運(yùn)用待定系數(shù)法求出反比例函數(shù)的解析式;同理,將點(diǎn)A,C的坐標(biāo)代入一次函數(shù)中,運(yùn)用待定系數(shù)法求出一次函數(shù)函數(shù)的解析式。

(2)設(shè)P點(diǎn)的坐標(biāo)為(x,y),先由△OAP的面積恰好等于正方形ABCD的面積,列出關(guān)于x的方程,解方程求出x的值,再將x的值代入,即可求出P點(diǎn)的坐標(biāo)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點(diǎn)P,過點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案