【題目】如圖所示,在正方形ABCD中,點(diǎn)E是BC邊上一點(diǎn),且BE:EC=2:1,AE與BD交于點(diǎn)F,則△AFD與四邊形DFEC的面積之比是________.

【答案】9:11

【解析】試題解析:設(shè)CE=x,S△BEF=a,

CE=x,BE:CE=2:1,

BE=2x,AD=BC=CD=AD=3x

BCAD

∴∠EBF=∠ADF,

又∵∠BFE=∠DFA

∴△EBF∽△ADF

S△BEF:S△ADF=(2=(2=,那么S△ADF=a

S△BCD-S△BEF=S四邊形EFDC=S正方形ABCD-S△ABE-S△ADF,

x2-a=9x2-×3x2x-a

化簡(jiǎn)可求出x2=a;

S△AFD:S四邊形DEFC=a:(x2-a)=aa =9:11.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,A30°,點(diǎn)DAB上,以BD為直徑的⊙OAC于點(diǎn)E,連接DE并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)F

1)求證:BDF是等邊三角形;

2)連接AFDC,若BC3,寫出求四邊形AFCD面積的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖菱形ABCD,四個(gè)頂點(diǎn)分別是A(-2,-1),B1,-3),C4,-1),D1,1).將菱形沿x軸負(fù)方向平移3個(gè)單位長(zhǎng)度得到菱形A1B1C1D1,再將菱形ABCD沿y軸正方向平移4個(gè)單位長(zhǎng)度得到菱形A2B2C2D2,畫出平移后的兩個(gè)圖形并分別寫出它們的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面的圖象反映的過(guò)程是:張強(qiáng)從家跑步去體育場(chǎng),在那里鍛煉了一陣后又原路返回,順路到文具店去買筆,然后散步回家.其中x表示時(shí)間,y表示張強(qiáng)離家的距離.根據(jù)圖象回答:

1)體育場(chǎng)離張強(qiáng)家______ 千米,張強(qiáng)從家到體育場(chǎng)用了______ 分鐘;

2)體育場(chǎng)離文具店______ 千米;

3)張強(qiáng)在文具店逗留了______ 分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀理解)對(duì)于任意正實(shí)數(shù)a、b

()20,

a2+b0,

a+b2,(只有當(dāng)ab時(shí),a+b等于2)

(1)(獲得結(jié)論)在a+b2(ab均為正實(shí)數(shù))中,若ab為定值p,

a+b2,只有當(dāng)ab時(shí),a+b有最小值2

根據(jù)上述內(nèi)容,回答下列問(wèn)題:若m0,只有當(dāng)m   時(shí),m+有最小值   

(2)(探索應(yīng)用)已知點(diǎn)Q(3,﹣4)是雙曲線y上一點(diǎn),過(guò)QQAx軸于點(diǎn)A,作QBy軸于點(diǎn)B.點(diǎn)P為雙曲線y(x0)上任意一點(diǎn),連接PA,PB,求四邊形AQBP的面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)給出的數(shù)軸及已知條件,解答下面的問(wèn)題:

1)已知點(diǎn)AB,C表示的數(shù)分別為1,-3.觀察數(shù)軸,與點(diǎn)A的距離為3的點(diǎn)表示的數(shù)是 ,AB兩點(diǎn)之間的距離為 。

2)數(shù)軸上,點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn)表示的數(shù)是 ;

3)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則與B點(diǎn)重合的點(diǎn)表示的數(shù)是 ;若此數(shù)軸上M,N兩點(diǎn)之間的距離為2019MN的左側(cè)),且當(dāng)A點(diǎn)與C點(diǎn)重合時(shí),M點(diǎn)與N點(diǎn)也恰好重合,則點(diǎn)M表示的數(shù)是 ,點(diǎn)N表示的數(shù)是 。

4)若數(shù)軸上P,Q兩點(diǎn)間的距離為aPQ的左側(cè)),表示數(shù)b的點(diǎn)到P,Q的兩點(diǎn)的距離相等,將數(shù)軸折疊,當(dāng)P點(diǎn)與Q點(diǎn)重合時(shí),點(diǎn)P表示的數(shù)是 ,點(diǎn)Q表示的數(shù)是 (用含a,b的式子表示這兩個(gè)數(shù))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面內(nèi)有∠AOB=60°,∠AOC=40°,OD是∠AOB的平分線,OE是∠AOC的平分線,求∠DOE的度數(shù).(請(qǐng)作圖解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AEBC,AFCD,垂足分別為E,F(xiàn),且BE=DF.

(1)求證:ABCD是菱形;

(2)若AB=5,AC=6,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們規(guī)定:將一個(gè)平面圖形分成面積相等的兩部分的直線叫做該平面圖形的等積線,等積線被 這個(gè)平面圖形截得的線段叫做該圖形的等積線段(例如三角形的中線就是三角形的等積線段).已 知菱形的邊長(zhǎng)為 4,且有一個(gè)內(nèi)角為 60°,設(shè)它的等積線段長(zhǎng)為 m,則 m 的取值范圍是(

A. m=4 m=4 B. 4m4 C. 2 D. 2 m4

查看答案和解析>>

同步練習(xí)冊(cè)答案