【題目】如圖,點D△ABC的邊AC上,要判斷△ADB△ABC相似,添加一個條件,不正確的是(

A.∠ABD=∠CB.∠ADB=∠ABCC.D.

【答案】C

【解析】

由∠A是公共角,利用有兩角對應相等的三角形相似,即可得AB正確;又由兩組對應邊的比相等且夾角對應相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應用.

∵∠A是公共角,

∴當∠ABD=C或∠ADB=ABC時,ADB∽△ABC(有兩角對應相等的三角形相似),故AB正確,不符合題意要求;

ABAD=ACAB時,ADB∽△ABC(兩組對應邊的比相等且夾角對應相等的兩個三角形相似),故D正確,不符合題意要求;

ABBD=CBAC時,∠A不是夾角,故不能判定ADBABC相似,故C錯誤,符合題意要求,

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ACBCED都是等腰直角三角形,∠BCA=DCE=90°,且點D在線段AB上,連接AE

1)求證:①BCD≌△ACE;②∠DAE=90°;

2)若AB=8,當點D在線段AB上什么位置時,四邊形ADCE的周長最小?請說明并求出周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,△ACB和△DCE均為等邊三角形,點AD,E在同一直線上,連接BE.填空:

AEB的度數(shù)為______;

線段AD,BE之間的數(shù)量關系為______

(2)拓展探究

如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE90°,點A,D,E在同一直線上,CM為△DCEDE邊上的高,連接BE,請判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)的圖象如圖,則下列結論①,且的值隨著值的增大而減小.③關于的方程的解是④當時,,其中正確的有___________.(只填寫序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在①這三對數(shù)值中,__________是方程x2yz3的解,__________是方程2xyz1的解,__________是方程3xyz2的解,因此__________是方程組的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD⊙O的直徑,CD⊥AB,垂足為點FAO⊥BC,垂足為點EAO=1

1)求∠C的大;

2)求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,它是一個8×10的網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點叫格點,△ABC的頂點均在格點上.

1)畫出△ABC關于直線OM對稱的△A1B1C1

2)畫出△ABC關于點O的中心對稱圖形△A2B2C2

3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形嗎?如果是,請畫出對稱軸.△A1B1C1與△A2B2C2組成的圖形   (填“是”或“不是”)軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABN△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2

1)求證:BD=CE;

2)求證:∠M=∠N

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A(﹣30),點Bx軸上異于點A一動點,設Bx,0),以AB為邊在x軸的上方作正方形ABCD

1)如圖(1),若點B1,0),則點D的坐標為  ;

2)若點EAB的中點,∠DEF90°,且EF交正方形外角的平分線BFF

如圖(2),當x0時,求證:DEEF;

若點F的縱坐標為y,求y關于x的函數(shù)解析式.

查看答案和解析>>

同步練習冊答案