【題目】完成下面的證明,如圖點(diǎn)D,E,F分別是三角形ABC的邊BC,CAAB上的點(diǎn),DEBA,DFCA.求證:∠FDE=∠A

證明:∵DEAB

∴∠FDE=∠      

DFCA,

∴∠A=∠      

∴∠FDE=∠A   

【答案】BFD,兩直線平行,內(nèi)錯(cuò)角相等,BFD,兩直線平行,同位角相等,等量代換

【解析】

根據(jù)平行線的性質(zhì)得出∠FDE=BFD,∠A=BFD,推出即可;

解:證明:∵DEAB,

∴∠FDE=∠BFD(兩直線平行,內(nèi)錯(cuò)角相等)

DFCA,

∴∠A=∠BFD(兩直線平行,同位角相等)

∴∠FDE=∠A(等量代換).

故答案為:BFD,兩直線平行,內(nèi)錯(cuò)角相等,BFD,兩直線平行,同位角相等,等量代換.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以RtABC的斜邊BC為邊,在ABC的同側(cè)作正方形BCEF,設(shè)正方形的中心為O,連接AO.若AB4,AO6,則AC的長(zhǎng)等于( 。

A. 12B. 16C. 8+6D. 4+6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)興趣小組開(kāi)展了一次活動(dòng),過(guò)程如下:如圖1,等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將三角板中含45°角的頂點(diǎn)放在A上,斜邊從AB邊開(kāi)始繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角α,其中三角板斜邊所在的直線交直線BC于點(diǎn)D,直角邊所在的直線交直線BC于點(diǎn)E.

(1)小敏在線段BC上取一點(diǎn)M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請(qǐng)你證明小敏發(fā)現(xiàn)的結(jié)論;
(2)當(dāng)0°<α≤45°時(shí),小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2 . 同組的小穎和小亮隨后想出了兩種不同的方法進(jìn)行解決:
小穎的想法:將△ABD沿AD所在的直線對(duì)折得到△ADF,連接EF(如圖2);
小亮的想法:將△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3);
請(qǐng)你從中任選一種方法進(jìn)行證明.
(3)小敏繼續(xù)旋轉(zhuǎn)三角板,請(qǐng)你繼續(xù)研究:當(dāng)135°<α<180°時(shí)(如圖4),等量BD2+CE2=DE2是否仍然成立?請(qǐng)作出判斷,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖甲,,的關(guān)系是什么?并寫(xiě)出推理過(guò)程;

2)如圖乙,,直接寫(xiě)出的數(shù)量關(guān)系_______________________

3)如圖丙,,直接寫(xiě)出的數(shù)量關(guān)系_____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)銷一種泰山旅游紀(jì)念品,4月的營(yíng)業(yè)額為2000元,為擴(kuò)大銷售量,5月份該商店對(duì)這種紀(jì)念品打9折銷售,結(jié)果銷售量增加20件,營(yíng)業(yè)額增加700元.
(1)求該種紀(jì)念品4月份的銷售價(jià)格;
(2)若4月份銷售這種紀(jì)念品獲利800元,5月份銷售這種紀(jì)念品獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC, ,AD=6,BC=8, ,點(diǎn)M是BC的中點(diǎn).點(diǎn)P從點(diǎn)M出發(fā)沿MB以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),到達(dá)點(diǎn)B后立刻以原速度沿BM返回;點(diǎn)Q從點(diǎn)M出發(fā)以每秒1個(gè)單位長(zhǎng)的速度在射線MC上勻速運(yùn)動(dòng).在點(diǎn)P,Q的運(yùn)動(dòng)過(guò)程中,以PQ為邊作等邊三角形EPQ,使它與梯形ABCD在射線BC的同側(cè).點(diǎn)P,Q同時(shí)出發(fā),當(dāng)點(diǎn)P返回到點(diǎn)M時(shí)停止運(yùn)動(dòng),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間是t秒(t>0).

(1)設(shè)PQ的長(zhǎng)為y,在點(diǎn)P從點(diǎn)M向點(diǎn)B運(yùn)動(dòng)的過(guò)程中,寫(xiě)出y與t之間的函數(shù)關(guān)系式(不必寫(xiě)t的取值范圍).
(2)當(dāng)BP=1時(shí),求△EPQ與梯形ABCD重疊部分的面積.
(3)隨著時(shí)間t的變化,線段AD會(huì)有一部分被△EPQ覆蓋,被覆蓋線段的長(zhǎng)度在某個(gè)時(shí)刻會(huì)達(dá)到最大值,請(qǐng)回答:該最大值能否持續(xù)一個(gè)時(shí)段?若能,直接寫(xiě)出t的取值范圍;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,BC為一個(gè)平行四邊形的三個(gè)頂點(diǎn)A,B,C三點(diǎn)的坐標(biāo)分別為(3,3)(6,4),(4,6)

(1)請(qǐng)直接寫(xiě)出這個(gè)平行四邊形第四個(gè)頂點(diǎn)的坐標(biāo);

(2)求這個(gè)平行四邊形的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A0,1),B2,0),C2,3.將三角形ABC先向左平移3個(gè)單位 ,再向下平移5個(gè)單位得三角形.

1)畫(huà)出;

2)求ABC的面積;

3)若點(diǎn)Py軸上,且ABP的面積等于ABC的面積,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)裝有進(jìn)水管和出水管的容器,從某時(shí)刻開(kāi)始4min內(nèi)只進(jìn)水不出水,在隨后的8min內(nèi)既進(jìn)水又出水,接著關(guān)閉進(jìn)水管直到容器內(nèi)的水放完,每分鐘的進(jìn)水量和出水量是兩個(gè)常數(shù),容器內(nèi)的水量y(單位:L)與時(shí)間x(單位:min)之間的關(guān)系如圖所示.

1)當(dāng)4≤x≤12時(shí),求yx的函數(shù)解析式;

2)每分進(jìn)水、出水各多少升?

3)第   分鐘時(shí)該容器內(nèi)的水恰好為10升.

查看答案和解析>>

同步練習(xí)冊(cè)答案