如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑.點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.
1.求證:CD為⊙O的切線;
2.若DC+DA=6,⊙O的直徑為10,求AB的長.
1.證明:連接OC,
∵OA=OC,
∴∠OCA=∠OAC.
∵CD⊥PA,
∴∠CDA=90°,
∴∠CAD+∠DCA=90°,
∵AC平分∠PAE,
∴∠DAC=∠CAO.………………1分
∴∠DCO=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°.
∴CD為⊙O的切線. …………………………2分
2.解:過O作OF⊥AB,垂足為F,
∴∠OCA=∠CDA=∠OFD=90°,
∴四邊形OCDF為矩形,
∴OC=FD,OF=CD.
∵DC+DA=6,設(shè)AD=x,則OF=CD=6-x, ……………………3分
∵⊙O的直徑為10,
∴DF=OC=5,∴AF=5-x,
在Rt△AOF中,由勾股定理得.
即,化簡得:
解得或(舍). ………………………4分
∴AD=2, AF=5-2=3.
∵OF⊥AB,
AB=2AF=6. ………………………..5分
解析:(1)證明∠DCO=90°即可求得CD為⊙O的切線,
(2)過O作OF⊥AB,構(gòu)建一個矩形,利用勾股定理求得相關(guān)線段,從而求得AB的長。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(安徽蕪湖卷)數(shù)學(xué) 題型:解答題
(本小題滿分12分)
如圖,已知直線PA交⊙0于A、B兩點,AE是⊙0的直徑.點C為⊙0上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D。
(1)求證:CD為⊙0的切線;
(2)若DC+DA=6,⊙0的直徑為l0,求AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆北京門頭溝中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,已知直線PA交⊙O于A、B兩點,AE是⊙O的直徑.點C為⊙O上一點,且AC平分∠PAE,過C作CD⊥PA,垂足為D.
【小題1】求證:CD為⊙O的切線;
【小題2】若DC+DA=6,⊙O的直徑為10,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com