如圖,拋物線y=x²+bx+c與直線y=x-1交于A、B兩點(diǎn).點(diǎn)A的橫坐標(biāo)為-3,點(diǎn)B在y軸上,點(diǎn)P是y軸左側(cè)拋物線上的一動(dòng)點(diǎn),橫坐標(biāo)為m,過點(diǎn)P作PC⊥x軸于C,交直線AB于D.
(1)求拋物線的解析式;
(2)當(dāng)m為何值時(shí),;
(3)是否存在點(diǎn)P,使△PAD是直角三角形,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

(1)y=x2+4x-1;(2)∴m=,-2,或-3時(shí)S四邊形OBDC=2SS△BPD

解析試題分析:(1)由x=0時(shí)帶入y=x-1求出y的值求出B的坐標(biāo),當(dāng)x=-3時(shí),代入y=x-1求出y的值就可以求出A的坐標(biāo),由待定系數(shù)法就可以求出拋物線的解析式;
(2)連結(jié)OP,由P點(diǎn)的橫坐標(biāo)為m可以表示出P、D的坐標(biāo),可以表示出S四邊形OBDC和2SBPD建立方程求出其解即可.

(3)如圖2,當(dāng)∠APD=90°時(shí),設(shè)出P點(diǎn)的坐標(biāo),就可以表示出D的坐標(biāo),由△APD∽△FCD就可與求出結(jié)論,如圖3,當(dāng)∠PAD=90°時(shí),作AE⊥x軸于E,就有,可以表示出AD,再由△PAD∽△FEA由相似三角形的性質(zhì)就可以求出結(jié)論.
試題解析:
∵y=x-1,∴x=0時(shí),y=-1,∴B(0,-1).
當(dāng)x=-3時(shí),y=-4,∴A(-3,-4).
∵y=x2+bx+c與直線y=x-1交于A、B兩點(diǎn),∴
∴拋物線的解析式為:y=x2+4x-1;
(2)∵P點(diǎn)橫坐標(biāo)是m(m<0),∴P(m,m2+4m-1),D(m,m-1)
如圖1①,作BE⊥PC于E,  ∴BE=-m.
CD=1-m,OB=1,OC=-m,CP=1-4m-m2,
∴PD=1-4m-m2-1+m=-3m-m2,

解得:m1=0(舍去),m2=-2,m3=
如圖1②,作BE⊥PC于E,
∴BE=-m.
PD=1-4m-m2+1-m=2-4m-m2,

解得:m=0(舍去)或m=-3,
∴m=,-2,或-3時(shí)S四邊形OBDC=2SBPD
)如圖2,當(dāng)∠APD=90°時(shí),設(shè)P(a,a2+4a-1),則D(a,a-1),
∴AP=m+4,CD=1-m,OC=-m,CP=1-4m-m2,
∴DP=1-4m-m2-1+m=-3m-m2
在y=x-1中,當(dāng)y=0時(shí),x=1,
∴(1,0),
∴OF=1,∴CF=1-m.AF=4
∵PC⊥x軸,
∴∠PCF=90°,
∴∠PCF=∠APD,
∴CF∥AP,
∴△APD∽△FCD,
 ∴
解得:m=1舍去或m=-2,∴P(-2,-5)
如圖3,當(dāng)∠PAD=90°時(shí),作AE⊥x軸于E,
∴∠AEF=90°.CE=-3-m,EF=4,AF=4
PD=1-m-(1-4m-m2)=3m+m2
∵PC⊥x軸,∵PC⊥x軸,
∴∠DCF=90°,
∴∠DCF=∠AEF,
∴AE∥CD.

∴AD=(-3-m)
∵△PAD∽△FEA,


∴m=-2或m=-3
∴P(-2,-5)或(-3,-4)與點(diǎn)A重合,舍去,
∴P(-2,-5).
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線:y=ax2+bx+4與x軸交于點(diǎn)A(-2,0)和B(4,0)、與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)T是拋物線對稱軸上的一點(diǎn),且△ACT是以AC為底的等腰三角形,求點(diǎn)T的坐標(biāo);
(3)點(diǎn)M、Q分別從點(diǎn)A、B以每秒1個(gè)單位長度的速度沿x軸同時(shí)出發(fā)相向而行.當(dāng)點(diǎn)M原點(diǎn)時(shí),點(diǎn)Q立刻掉頭并以每秒個(gè)單位長度的速度向點(diǎn)B方向移動(dòng),當(dāng)點(diǎn)M到達(dá)拋物線的對稱軸時(shí),兩點(diǎn)停止運(yùn)動(dòng).過點(diǎn)M的直線l⊥軸,交AC或BC于點(diǎn)P.求點(diǎn)M的運(yùn)動(dòng)時(shí)間t(秒)與△APQ的面積S的函數(shù)關(guān)系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線與x軸,y軸分別相交于點(diǎn)B,點(diǎn)C,經(jīng)過B、C兩點(diǎn)的拋物線與x軸的另一交點(diǎn)為A,頂點(diǎn)為P,且對稱軸是直線
(1)求A點(diǎn)的坐標(biāo)及該拋物線的函數(shù)表達(dá)式;
(2)求出∆PBC的面積;
(3)請問在對稱軸右側(cè)的拋物線上是否存在點(diǎn)Q,使得以點(diǎn)A、B、C、Q所圍成的四邊形面積是∆PBC的面積的?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為-8.
(1)求該拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為C,交直線AB于點(diǎn)D,作PE⊥AB于點(diǎn)E.
①設(shè)△PDE的周長為l,點(diǎn)P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)F或G恰好落在y軸上時(shí),直接寫出對應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某賓館有30個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房價(jià)為每天120元時(shí),房間會(huì)全部住滿.當(dāng)每個(gè)房間每天的房價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房價(jià)不得高于210元.設(shè)每個(gè)房間的房價(jià)增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個(gè)房間時(shí),賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知二次函數(shù)經(jīng)過、、C三點(diǎn),點(diǎn)是拋物線與直線的一個(gè)交點(diǎn).
(1)求二次函數(shù)關(guān)系式和點(diǎn)C的坐標(biāo);
(2)對于動(dòng)點(diǎn),求的最大值;
(3)若動(dòng)點(diǎn)M在直線上方的拋物線運(yùn)動(dòng),過點(diǎn)M做x軸的垂線交x軸于點(diǎn)F,如果直線AP把線段MF分成1:2的兩部分,求點(diǎn)M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線AB:與拋物線交于A、B兩點(diǎn),
(1)直線AB總經(jīng)過一個(gè)定點(diǎn)C,請直接寫出點(diǎn)C坐標(biāo);
(2)當(dāng)時(shí),在直線AB下方的拋物線上求點(diǎn)P,使△ABP的面積等于5;
(3)若在拋物線上存在定點(diǎn)D使∠ADB=90°,求點(diǎn)D到直線AB的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xOy中,已知點(diǎn)P是反比例函數(shù)y=(x>0)圖象上一個(gè)動(dòng)點(diǎn),以P為圓心的圓始終與y軸相切,設(shè)切點(diǎn)為A.
(1)如圖1,⊙P運(yùn)動(dòng)到與x軸相切,設(shè)切點(diǎn)為K,試判斷四邊形OKPA的形狀,并說明理由.
(2)如圖2,⊙P運(yùn)動(dòng)到與x軸相交,設(shè)交點(diǎn)為B,C.當(dāng)四邊形ABCP是菱形時(shí):
①求出點(diǎn)A,B,C的坐標(biāo).
②在過A,B,C三點(diǎn)的拋物線上是否存在點(diǎn)M,使△MBP的面積是菱形ABCP面積的?若存在,試求出所有滿足條件的M點(diǎn)的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,在菱形ABCD中,對角線AC、BD相交于點(diǎn)O,AC=8,BD=6.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒1個(gè)單位長的速度由點(diǎn)A向點(diǎn)D做勻速運(yùn)動(dòng),點(diǎn)Q沿折線CB—BA向點(diǎn)A做勻速運(yùn)動(dòng).
(1)點(diǎn)P將要運(yùn)行路徑AD的長度為     ;點(diǎn)Q將要運(yùn)行的路徑折線CB—BA的長度為        .
(2)當(dāng)點(diǎn)Q在BA邊上運(yùn)動(dòng)時(shí),若點(diǎn)Q的速度為每秒2個(gè)單位長,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并求自變量t的取范圍;
②求當(dāng)t為何值時(shí),S有最大值,最大值是多少?
(3)如圖2,若點(diǎn)Q的速度為每秒a個(gè)單位長(a≤),當(dāng)t =4秒時(shí):
①此時(shí)點(diǎn)Q是在邊CB上,還是在邊BA上呢?
②△APQ是等腰三角形,請求出a的值.

查看答案和解析>>

同步練習(xí)冊答案