【題目】已知,如圖1,將繞點(diǎn)旋轉(zhuǎn)得到,延長(zhǎng)線于點(diǎn),使得,連接

1)求證:四邊形是平行四邊形;

2)如圖2,點(diǎn)是邊上任意一點(diǎn)(點(diǎn)與點(diǎn)、不重合),連接于點(diǎn),連接,過(guò)點(diǎn),交于點(diǎn)

①求證:;

②當(dāng)點(diǎn)邊中點(diǎn)時(shí),恰有為正整數(shù)),求的值.

【答案】1)證明見解析

2)①證明見解析 n=4

【解析】

1)利用兩線段平行且相等證明平行四邊形.

2)①由,根據(jù)相似比即可求得數(shù)量關(guān)系.

②由,可導(dǎo)出相關(guān)線段的數(shù)量關(guān)系,即可求出結(jié)果.

解:(1)由題意可得,點(diǎn)DE、F共線

AD=BF

ADCF

又∵

∴四邊形是平行四邊形.

2)①∵

由①得

②∵,

邊中點(diǎn)

BG=BC

GF=BC=AD

,即HD=HF

,即DK=HF

HD=4HK

n=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,過(guò)⊙T外一點(diǎn)P引它的兩條切線,切點(diǎn)分別為M,N,若,則稱P為⊙T的環(huán)繞點(diǎn).

(1)當(dāng)⊙O半徑為1時(shí),

①在中,⊙O的環(huán)繞點(diǎn)是___________;

②直線y=2x+bx軸交于點(diǎn)A,y軸交于點(diǎn)B,若線段AB上存在⊙O的環(huán)繞點(diǎn),求b的取值范圍;

2)⊙T的半徑為1,圓心為(0,t),以為圓心,為半徑的所有圓構(gòu)成圖形H,若在圖形H上存在⊙T的環(huán)繞點(diǎn),直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】6分)某海域有A,B兩個(gè)港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發(fā),沿東北方向行駛一段距離后,到達(dá)位于B港口南偏東75°方向的C處,求該船與B港口之間的距離即CB的長(zhǎng)(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上,且CD=CE,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF,CF,連接BE并延長(zhǎng)交CF于點(diǎn)G.下列結(jié)論:

①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號(hào))

【答案】①②③④.

【解析】

試題分析:△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,

EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,BAE=CAF,AE=AF 可判定△ABE≌△ACF,故①正確.②∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以==,又因BD=2DC,DC=DE,可得=2,FG=2EG.故④正確.

考點(diǎn):三角形綜合題.

型】填空
結(jié)束】
19

【題目】先化簡(jiǎn),再求值:(a+1-)÷(),其中a=2+.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】受非洲豬瘟疫情影響,2019年我國(guó)豬肉價(jià)格有較大幅度的上升.為了解某地區(qū)養(yǎng)殖戶的受災(zāi)情況,現(xiàn)從該地區(qū)建檔的養(yǎng)殖戶中隨機(jī)抽取了部分養(yǎng)殖戶進(jìn)行調(diào)查(把調(diào)查結(jié)果分為四個(gè)等級(jí):A級(jí)-非常嚴(yán)重,B級(jí)-嚴(yán)重,C級(jí)-一般,D級(jí)-沒(méi)有感染),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:

1)填空:本次抽樣調(diào)查的養(yǎng)殖戶的總戶數(shù)是______;在扇形統(tǒng)計(jì)圖中級(jí)所對(duì)應(yīng)的圓心角為______度;

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該地區(qū)建檔的養(yǎng)殖戶有1500戶,估計(jì)非常嚴(yán)重與嚴(yán)重的養(yǎng)殖戶一共有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列內(nèi)容,并完成相關(guān)問(wèn)題.

小明定義了一種新的運(yùn)算,取名為※(加乘)運(yùn)算.按這種運(yùn)算進(jìn)行運(yùn)算的算式舉例如下:

;

;

;

問(wèn)題:

1)請(qǐng)歸納※(加乘)運(yùn)算的運(yùn)算法則:

兩數(shù)進(jìn)行※(加乘)運(yùn)算時(shí),________.特別地,0和任何數(shù)進(jìn)行※(加乘)運(yùn)算,或任何數(shù)和0進(jìn)行※(加乘)運(yùn)算,________

2)計(jì)算:.(括號(hào)的作用與它在有理數(shù)運(yùn)算中的作用一致)

3)我們知道加法有交換律和結(jié)合律,這兩種運(yùn)算律在有理數(shù)的※(加乘)運(yùn)算中還適用嗎?請(qǐng)任選一個(gè)運(yùn)算律,判斷它在※(加乘)運(yùn)算中是否適用,并舉例驗(yàn)證.(舉一個(gè)例子即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D為邊BC上一點(diǎn),且ADAB,AEBC,垂足為點(diǎn)E.過(guò)點(diǎn)DDFAB,交邊AC于點(diǎn)F,連接EF,EF2BDEC

(1)求證:△EDF∽△EFC;

(2)如果,求證:ABBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一家健身俱樂(lè)部收費(fèi)標(biāo)準(zhǔn)為180/次,若購(gòu)買會(huì)員年卡,可享受如下優(yōu)惠:

會(huì)員年卡類型

辦卡費(fèi)用(元)

每次收費(fèi)(元)

A

1500

100

B

3000

60

C

4000

40

例如,購(gòu)買A類會(huì)員年卡,一年內(nèi)健身20次,消費(fèi)元,若一年內(nèi)在該健身俱樂(lè)部健身的次數(shù)介于50-60次之間,則最省錢的方式為(

A.購(gòu)買A類會(huì)員年卡B.購(gòu)買B類會(huì)員年卡

C.購(gòu)買C類會(huì)員年卡D.不購(gòu)買會(huì)員年卡

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形的一條對(duì)角線將這個(gè)四邊形分成兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),那么我們將這條對(duì)角線叫做這個(gè)四邊形的相似對(duì)角線.

(1)如圖1,四邊形ABCD中,∠DAB100°,∠DCB130°,對(duì)角線AC平分∠DAB,求證:AC是四邊形ABCD的相似對(duì)角線;

(2)如圖2,直線分別與x,y軸相交于AB兩點(diǎn),P為反比例函數(shù)y(k0)上的點(diǎn),若AO是四邊形ABOP的相似對(duì)角線,求反比例函數(shù)的解析式;

(3)如圖3AC是四邊形ABCD的相似對(duì)角線,點(diǎn)C的坐標(biāo)為(3,1),ACx軸,∠BCA=∠DCA30°,連接BD,△BCD的面積為.過(guò)A,C兩點(diǎn)的拋物線yax2+bx+c(a0)x軸交于EF兩點(diǎn),記|m|AC+1,若直線ymx與拋物線恰好有3個(gè)交點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案