)如圖,已知拋物線經(jīng)過點(diǎn)A(4,0),B(0,4),C(6,6).
(1)求拋物線的表達(dá)式;
(2)證明:四邊形AOBC的兩條對(duì)角線互相垂直;
(3)在四邊形AOBC的內(nèi)部能否截出面積最大的▱DEFG?(頂點(diǎn)D,E,F(xiàn),G分別在線段AO,OB,BC,CA上,且不與四邊形AOBC的頂點(diǎn)重合)若能,求出▱DEFG的最大面積,并求出此時(shí)點(diǎn)D的坐標(biāo);若不能,請(qǐng)說明理由.
解:(1)設(shè)該拋物線的解析式為y=ax2+bx+c,
根據(jù)題意得,解得,
∴拋物線的表達(dá)式為y=x2﹣x+4;
(2)如圖1,連結(jié)AB、OC,
∵A(4,0),B(0,4),C(6,6),
∴OA=4,OB=4,CB==2,CA==2,
∴OA=OB,CA=CB,
∴OC垂直平分AB,
即四邊形AOBC的兩條對(duì)角線互相垂直;
(3)能.
如圖2,AB==4,OC==6,設(shè)D(t,0),
∵四邊形DEFG為平行四邊形,
∴EF∥DG,EF=DG,
∵OC垂直平分AB,
∴△OBC與△OAC關(guān)于OC對(duì)稱,
∴EF和DG為對(duì)應(yīng)線段,
∴四邊形DEFG為矩形,DG∥OC,
∴DE∥AB,
∴△ODE∽△OAB,
∴=,即=,解得DE=t,
∵DG∥OC,
∴△ADG∽△AOC,
∴=,即=,解得DG=(4﹣t),
∴矩形DEFG的面積=DE•DG=t•(4﹣t)=﹣3t2+12t=﹣3(t﹣2)2+12,
當(dāng)t=2時(shí),平行四邊形DEFG的面積最大,最大值為12,此時(shí)D點(diǎn)坐標(biāo)為(2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
直線y=x+b(b>0)與直線y=kx(k<0)的交點(diǎn)位于( 。
A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
郴州市某中學(xué)校團(tuán)委開展“關(guān)愛殘疾兒童”愛心捐書活動(dòng),全校師生踴躍捐贈(zèng)各類書籍共3000本.為了解各類書籍的分布情況,從中隨機(jī)抽取了部分書籍分四類進(jìn)行統(tǒng)計(jì):A.藝術(shù)類;B.文學(xué)類;C.科普類;D.其他,并將統(tǒng)計(jì)結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
(1)這次統(tǒng)計(jì)共抽取了 本書籍,扇形統(tǒng)計(jì)圖中的m= ,∠α的度數(shù)是 ° ;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)估計(jì)全校師生共捐贈(zèng)了多少本文學(xué)類書籍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,△ABC是銳角三角形,過點(diǎn)C作CD⊥AB,垂足為D,
則點(diǎn)C到直線AB的距離是 圖1
A. 線段CA的長(zhǎng) B.線段CD的長(zhǎng)
C. 線段AD的長(zhǎng) D.線段AB的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
不透明的袋子里裝有1個(gè)紅球、1個(gè)白球,這些球除顏色外無其他差別.從袋子中隨機(jī)
摸出一個(gè)球,則摸出紅球的概率是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com