【題目】如圖,某數(shù)學(xué)興趣小組為了測量河對(duì)岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點(diǎn),測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為m.

【答案】50﹣
【解析】解:如圖,過點(diǎn)A作AM⊥DC于點(diǎn)M,過點(diǎn)B作BN⊥DC于點(diǎn)N.

則AB=MN,AM=BN.
在直角△ACM,∵∠ACM=45°,AM=50m,
∴CM=AM=50m.
∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,
∴CN= = = (m),
∴MN=CM﹣CN=50﹣ (m).
則AB=MN=(50﹣ )m.
故答案是:50﹣
如圖,過點(diǎn)A作AM⊥DC于點(diǎn)M,過點(diǎn)B作BN⊥DC于點(diǎn)N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yx2+2mx+mx軸只有一個(gè)交點(diǎn),那么實(shí)數(shù)m的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在線段AB上,且ACBC=52,點(diǎn)D是線段BC的中點(diǎn),點(diǎn)E是線段AD的中點(diǎn),AB=14,求線段CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國人很早開始使用負(fù)數(shù),中國古代數(shù)學(xué)著作《九章算術(shù)》的方程一章,在世界數(shù)學(xué)史上首次正式引入負(fù)數(shù),如果收入1000元記作+1000元,那么﹣800元表示( )

A. 支出200 B. 收入200

C. 支出800 D. 收入800

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)(-6,8)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算中正確的是(
A.aa2=a2
B.2aa=2a2
C.(2a22=2a4
D.6a8÷3a2=2a4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)都可以進(jìn)行這樣的分解: , 是正整數(shù),且),在的所有這種分解中,如果, 兩因數(shù)之差的絕對(duì)值最小,我們就稱的最佳分解,并規(guī)定:

例如可以分解成, ,因?yàn)?/span>,所以的最佳分解,所以

)求出的值.

)如果一個(gè)兩位正整數(shù) , , 為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為,那么我們稱這個(gè)數(shù)文瀾數(shù)求所有文瀾數(shù)并寫出所有文瀾數(shù)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C三地在同一直線上,D地在A地北偏東30°方向、在C地北偏西45°方向.C地在A地北偏東75°方向.且BD=BC=30m.

(1)求∠ADC的度數(shù);

(2)求A、D兩地的距離.

查看答案和解析>>

同步練習(xí)冊答案