【題目】如圖,將直線y=-x沿y軸向下平移后的直線恰好經過點A(2,-4),且與y軸交于點B,在x軸上存在一點P使得PAPB的值最小,則點P的坐標為________

【答案】

【解析】試題分析:如圖所示,作點B關于x軸對稱的點B',連接AB',交x軸于P,則點P即為所求,

設直線y=-x沿y軸向下平移后的直線解析式為y=-xa,

A(2,-4)代入可得,a=-2,

∴平移后的直線為y=-x-2,

x=0,則y=-2,即B(0,-2)

B'(0,2),

設直線AB'的解析式為ykxb,

A(2,-4),B'(0,2)代入可得,

,

解得,

∴直線AB'的解析式為y=-3x2

y0,則x

P,0),

故答案為:(,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列圖形,尋找對頂角(不含平角).

(1)如圖①,圖中共有____對對頂角;

(2)如圖②,圖中共有____對對頂角;

(3)如圖③,圖中共有____對對頂角;

(4)研究(1)~(3)小題中直線條數(shù)與對頂角對數(shù)的關系,猜想:若有n條直線相交于一點,則共可形成__________對對頂角;

(5)若有180條直線相交于一點,則可形成________對對頂角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知有兩人分別騎自行車和摩托車沿著相同的路線從甲地到乙地,如圖反映的是這兩個人在行駛過程中時間和路程的關系,請根據(jù)圖象回答下列問題:

(1)甲地與乙地相距多少千米?兩人分別用了幾個小時才到達乙地?誰先到達乙地?先到者早到多長時間?

(2)分別描述在這個過程中自行車和摩托車的行駛狀態(tài);

(3)求摩托車行駛的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一位籃球運動員跳起投籃,球沿拋物線y=﹣ x2+3.5運行,然后準確落入籃框內.已知籃框的中心離地面的距離為3.05米.

(1)球在空中運行的最大高度為多少米?
(2)如果該運動員跳投時,球出手離地面的高度為2.25米,請問他距離籃框中心的水平距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖, 是邊長為3cm的等邊三角形,動點P、Q同時從AB兩點出發(fā),分別沿ABBC方向勻速移動,它們的速度都是,當點P到達點B時,P、Q兩點停止運動,設點P的運動時間,解答下列各問題:

經過秒時,求的面積;

t為何值時, 是直角三角形?

是否存在某一時刻t,使四邊形APQC的面積是面積的三分之二?如果存在,求出t的值;不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,①②③④⑤五個平行四邊形拼成一個含30°內角的菱形EFGH(不重疊無縫隙).若①②③④四個平行四邊形面積的和為14cm2,四邊形ABCD面積是11cm2,則①②③④四個平行四邊形周長的總和為( )

A. 48cm B. 36cm C. 24cm D. 18cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸的單位長度為1,如果P,Q表示的數(shù)互為相反數(shù),那么圖中的4個點中,哪一個點表示的數(shù)的平方值最大(  )

A. P B. R C. Q D. T

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,AOC=50°.

(1)求出∠AOB及其補角的度數(shù);

(2)請求出∠DOC和∠AOE的度數(shù),并判斷∠DOE與∠AOB是否互補,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次食品安檢中,抽查某企業(yè) 10 袋奶粉,每袋取出 100 克,檢測每 100

克奶粉蛋白質含量與規(guī)定每 100 克含量(蛋白質)比較,不足為負,超過為正, 記錄如下(注:規(guī)定每 100g 奶粉蛋白質含量為 15g)

﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5

(1)求平均每 100 克奶粉含蛋白質為多少?

(2)每 100 克奶粉含蛋白質不少于 14 克為合格,求合格率為多少?

查看答案和解析>>

同步練習冊答案