【題目】如圖,為加快城鄉(xiāng)對接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對A,B兩地間的公路進行改建.如圖,A,B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°,開通隧道后,汽車從A地到B地大約可以少走多少千米(結(jié)果精確到1千米)?(參考數(shù)據(jù):≈1.4,≈1.7)
【答案】汽車從A地到B地比原來少走為27千米.
【解析】
過點C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD的長度和AC的長度,在直角△CBD中,解直角三角形求出BD的長度,再求出AD的長度,進而求出汽車從A地到B地比原來少走多少路程.
過點C作AB的垂線CD,垂足為D,
∵AB⊥CD,sin30°=,BC=80千米,
∴CD=BCsin30°=80×=40(千米),
AC=≈56.4(千米),
∵cos30°=,BC=80(千米),
∴BD=BCcos30°=80×=40(千米),
∵tan45°=,CD=40(千米),
∴AD=40(千米),
∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),
∴汽車從A地到B地比原來少走多少路程為:AC+BC-AB=136.4-109.2=27.2≈27(千米).
答:汽車從A地到B地比原來少走的路程為27千米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABO為底角是30°的等腰三角形,OA=AB=4,O為坐標原點,點B在x軸上,點P在直線AB上運動,當線段OP最短時,點P的坐標為( )
A. (1,1) B. (,3) C. (3,) D. (2,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC=2,BC=4,P是AB上一點,連接PC,以PC為直徑作⊙M交BC于D,連接PD,作DE⊥AC于點E,交PC于點G,已知PD=PG,則BD=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于三角函數(shù)有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ;cos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβ;tan(α+β)=(1﹣tanαtanβ≠0),合理利用這些公式可以將一些角的三角函數(shù)值轉(zhuǎn)化為特殊角的三角函數(shù)來求值,如sin90°=sin(30°+60°)=sin30°cos60°+cos30°sin60°==1,利用上述公式計算下列三角函數(shù)①sin105°=,②tan105°=﹣2﹣,③sin15°=,④cos90°=0,其中正確的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點Q、E、F分別在BC、AB、AC上(點E與點A、點B均不重合).
(1)當AE=8時,求EF的長;
(2)設(shè)AE=x,矩形EFPQ的面積為y.
①求y與x的函數(shù)關(guān)系式;
②當x為何值時,y有最大值,最大值是多少?
(3)當矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運動(當點P到達點B時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,∠ADC=60°,BD是一條對角線,點P在邊CD上(與點C,D不重合),連接AP,平移△ADP,使點D移動到點C,得到△BCQ,在BD上取一點H,使HQ=HD,連接HQ,AH,PH.
(1)依題意補全圖1;
(2)判斷AH與PH的數(shù)量關(guān)系及∠AHP的度數(shù),并加以證明;
(3)若∠AHQ=141°,菱形ABCD的邊長為1,請寫出求DP長的思路.(可以不寫出計算結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出下列命題及函數(shù)y=﹣x,y=﹣x2,y=的圖象.①如果﹣a>﹣>﹣a2,那么a<﹣1;②如果﹣>﹣a2>﹣a,那么﹣1<a<0;③如果﹣a2>﹣a>﹣,那么0<a<1;④如果﹣>﹣a2>﹣a.那么a>1,則正確命題的序號是( 。
A. ①② B. ②③ C. ①③ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=+n(n<0)與坐標軸交于A、B兩點,與y=(x>0)交于點E,過點E作EF⊥x軸,垂足為F,且△OAB∽△FEB,相似比為.
(1)若n=-,求m的值;
(2)連接OE,試探究m與n的數(shù)量關(guān)系,并直接寫出直線OE的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com