請先閱讀下面的解題過程,再完成后面的問題.
已知方程x2+3x+1=0的兩個實數(shù)根為α,β,求
α
β
+
β
α
的值.
解:因為△=32-4×1=5>0,所以α≠β.…①
由根與系數(shù)的關系,得α+β=-3,αβ=1.….②
所以
α
β
+
β
α
=
α
β
+
β
α
=
α+β
αβ
=
-3
1
=-3
.…③
上面的解題過程是否正確?若不正確,指出錯在哪一步,并寫出正確的解題過程.
分析:根據根與系數(shù)的關系得到α+β=-3<0,αβ=1>0,則α<0,β<0,再利用二次根式的性質化簡得到原式=
αβ
β2
+
αβ
α2
=-
αβ
β
-
αβ
α
=-
αβ
α+β
αβ
,然后利用整體代入的方法計算.
解答:解:上面的解題過程不正確,出錯在第③步.
正確解法為:因為△=32-4×1=5>0,所以α≠β,
由根與系數(shù)的關系,得α+β=-3<0,αβ=1>0,
所以α<0,β<0,
所以原式=
αβ
β2
+
αβ
α2

=-
αβ
β
-
αβ
α

=-
αβ
α+β
αβ

=-
1
-3
1

=3.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-
b
a
,x1x2=
c
a
.也考查了二次根式的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀理解題:一次數(shù)學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根啊.
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉化方法.
全體同學:OK!換元法真神奇!
現(xiàn)在,請你用換元法解下列分式方程(
x
x-1
)2-5(
x
x-1
)-6=0

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年山東省濰坊市諸城市繁華中學九年級(上)月考數(shù)學試卷(10月份)(解析版) 題型:解答題

閱讀理解題:一次數(shù)學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉化方法.
全體同學:OK!換元法真神奇!
現(xiàn)在,請你用換元法解下列分式方程

查看答案和解析>>

科目:初中數(shù)學 來源:《28.3 用一元二次方程解決實際問題》2010年習題精選(二)(解析版) 題型:解答題

閱讀理解題:一次數(shù)學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉化方法.
全體同學:OK!換元法真神奇!
現(xiàn)在,請你用換元法解下列分式方程

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年河南省南陽市書院中學九年級(上)第一學月數(shù)學試卷(解析版) 題型:解答題

閱讀理解題:一次數(shù)學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉化方法.
全體同學:OK!換元法真神奇!
現(xiàn)在,請你用換元法解下列分式方程

查看答案和解析>>

科目:初中數(shù)學 來源:2006年青海省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•青海)閱讀理解題:一次數(shù)學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數(shù)變成了4次,用現(xiàn)有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現(xiàn)方程中x2-x是整體出現(xiàn)的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數(shù),這是一種很重要的轉化方法.
全體同學:OK!換元法真神奇!
現(xiàn)在,請你用換元法解下列分式方程

查看答案和解析>>

同步練習冊答案