如圖,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分線,以AB上一點(diǎn)O為圓心,AD為弦作⊙O.
(1)在圖中作出⊙O;(不寫作法,保留作圖痕跡)
(2)求證:BC為⊙O的切線.
(1)如圖;

(2)連接OD;
∵AD平分∠BAC,
∴∠BAD=∠DAC;
又∵OD=OA,
∴∠ODA=∠OAD,
∴∠ODA=∠DAC,
∴ODAC,
∴∠ODC=∠C=90°,
∴BC為⊙O的切線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,Rt△ABC中,∠C=90°,CD=6,以CD為直徑的⊙O切AB于G,設(shè)AG2=y,AC=x.
(1)求y與x的函數(shù)關(guān)系式,并指出自變量的取值范圍.
(2)利用所求出的函數(shù)關(guān)系式,求當(dāng)AC為何值時(shí),才能使得BC與⊙O的直徑相等?
(3)△ACB有可能為等腰三角形嗎?若可能,請(qǐng)求出x的值;若不可能,請(qǐng)說(shuō)出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB與⊙O相切于點(diǎn)B,AO的延長(zhǎng)線交⊙O于點(diǎn)C,連接BC.若∠A=36°,則∠C=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知⊙O1經(jīng)過(guò)A(-4,2),B(-3,3),C(-1,-1),O(0,0)四點(diǎn),一次函數(shù)y=-x-2的圖象是直線l,直線l與y軸交于點(diǎn)D.
(1)在右邊的平面直角坐標(biāo)系中畫出⊙O1,直線l與⊙O1的交點(diǎn)坐標(biāo)為______;
(2)若⊙O1上存在整點(diǎn)P(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn)),使得△APD為等腰三角形,所有滿足條件的點(diǎn)P坐標(biāo)為______;
(3)將⊙O1沿x軸向右平移______個(gè)單位時(shí),⊙O1與y相切;
(4)將⊙O1沿x軸向右平移______個(gè)單位時(shí),⊙O1與l相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC為等邊三角形,AB=6,動(dòng)點(diǎn)O在△ABC的邊上從點(diǎn)A出發(fā)沿著A→C→B→A的路線勻速運(yùn)動(dòng)一周,速度為1個(gè)長(zhǎng)度單位每秒,以O(shè)為圓心、
3
為半徑的圓在運(yùn)動(dòng)過(guò)程中與△ABC的邊第二次相切時(shí)是出發(fā)后第______秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義:定點(diǎn)與⊙O上任意一點(diǎn)之間距離的最小值稱為點(diǎn)與⊙O之間的距離.現(xiàn)有一矩形ABCD如圖所示,AB=14,BC=12,⊙O與矩形的邊AB、BC、CD分別相切于點(diǎn)E、F、G,則點(diǎn)A與⊙O之間的距離為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,以點(diǎn)O為圓心,半徑為2的圓與y軸交于點(diǎn)A,點(diǎn)P(4,2)是⊙O外一點(diǎn),連接AP,直線PB與⊙O相切于點(diǎn)B,交x軸于點(diǎn)C.
(1)證明PA是⊙O的切線;
(2)求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以O(shè)A的長(zhǎng)為半徑的⊙O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE
(1)判斷直線CE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,AB,AC與⊙O相切于點(diǎn)B,C,點(diǎn)P是圓上異于B、C的一動(dòng)點(diǎn),則∠BPC的度數(shù)是(  )
A.65°B.115°C.65°或115°D.130°或50°

查看答案和解析>>

同步練習(xí)冊(cè)答案