【題目】如圖,一次函數(shù)的圖象與軸交于點(diǎn),與正比例函數(shù)的圖象相交于點(diǎn),且.

1)分別求出這兩個(gè)函數(shù)的解析式;

2)求的面積;

3)點(diǎn)軸上,且是等腰三角形,請(qǐng)直接寫出點(diǎn)的坐標(biāo).

【答案】1;;(210;(3

【解析】

1)根據(jù)點(diǎn)A坐標(biāo),可以求出正比例函數(shù)解析式,再求出點(diǎn)B坐標(biāo)即可求出一次函數(shù)解析式.

2)如圖1中,過AADy軸于D,求出AD即可解決問題.

3)分三種情形討論即可①OA=OP,②AO=AP,③PA=PO

解:(1正比例函數(shù)的圖象經(jīng)過點(diǎn),

,

正比例函數(shù)解析式為

如圖1中,過軸于,

中,,

解得

一次函數(shù)解析式為

2)如圖1中,過軸于,

3)如圖2,當(dāng)OP=OA時(shí),P(5,0),P (5,0)

當(dāng)AO=AP時(shí),P (8,0),

當(dāng)PA=PO時(shí),線段OA的垂直平分線為y= ,

P,

∴滿足條件的點(diǎn)P的坐標(biāo)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

1)(+12)﹣(﹣7+(﹣5)﹣(+30

2

3)﹣33×(﹣2)﹣12÷[(﹣3)﹣(﹣1]

4)(﹣×(﹣330.25×(﹣3×(﹣24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y (a>0,a為常數(shù))和y在第一象限內(nèi)的圖象如圖所示,點(diǎn)My的圖象上,MCx軸于點(diǎn)C,交y的圖象于點(diǎn)A;MDy軸于點(diǎn)D,交y的圖象于點(diǎn)B.當(dāng)點(diǎn)My的圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①SODBSOCA;②四邊形OAMB的面積不變;③當(dāng)點(diǎn)AMC的中點(diǎn)時(shí),則點(diǎn)BMD的中點(diǎn).其中正確結(jié)論的個(gè)數(shù)是(  )

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家商場(chǎng)以同樣的價(jià)格出售同樣的電器,但各自推出的優(yōu)惠方案不同.甲商場(chǎng)規(guī)定:凡超過 元的電器,超出的金額按 收取;乙商場(chǎng)規(guī)定:凡超過 元的電器,超出的金額按 收。愁櫩唾徺I的電器價(jià)格是 元.

(1)當(dāng) 時(shí),該顧客應(yīng)選擇在 商場(chǎng)購買比較合算;

(2)當(dāng) 時(shí),分別用代數(shù)式表示在兩家商場(chǎng)購買電器所需付的費(fèi)用;

(3)當(dāng) 時(shí),該顧客應(yīng)選擇哪一家商場(chǎng)購買比較合算?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是藥品研究所測(cè)得的某種新藥在成人用藥后,血液中的藥物濃度y(微克/毫升)隨用藥后的時(shí)間x(小時(shí))變化的圖象(圖象由線段OA與部分雙曲線AB組成).并測(cè)得當(dāng)ya時(shí),該藥物才具有療效.若成人用藥4小時(shí),藥物開始產(chǎn)生療效,且用藥后9小時(shí),藥物仍具有療效,則成人用藥后,血液中藥物濃度至少需要多長時(shí)間達(dá)到最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAC內(nèi)有一點(diǎn)P,過點(diǎn)P作直線lAB,交ACE點(diǎn).今欲在∠BAC的兩邊上各找一點(diǎn)Q、R,使得PQR的中點(diǎn),以下是甲、乙兩人的作法:

甲:①過P作直線l1AC,交直線ABF點(diǎn),并連接EF;

②過P作直線l2EF,分別交兩直線AB、ACQ、R兩點(diǎn),則Q、R即為所求.

乙:①在直線AC上另取一點(diǎn)R,使得AE=ER;

②作直線PR,交直線ABQ點(diǎn),則Q、R即為所求.

下列判斷正確的是( 。

A. 兩人皆正確 B. 兩人皆錯(cuò)誤

C. 甲正確,乙錯(cuò)誤 D. 甲錯(cuò)誤,乙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,點(diǎn)D在等邊三角形ABC的邊AB上,點(diǎn)F在邊AC上,連接DF并延長交BC的延長線于點(diǎn)E,EF=FD

求證:AD=CE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(8,0),點(diǎn)B(0,6),把ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得A′B′O′,點(diǎn)A、O旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′、O′,記旋轉(zhuǎn)角為α.

(1)如圖1,若α=90°,則AB=   ,并求AA′的長;

(2)如圖2,若α=120°,求點(diǎn)O′的坐標(biāo);

(3)在(2)的條件下,邊OA上的一點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為P′,當(dāng)O′P+BP′取得最小值時(shí),直接寫出點(diǎn)P′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+2x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,AB=4,矩形OBDC的邊CD=1,延長DC交拋物線于點(diǎn)E.

(1)求拋物線的解析式;

(2)如圖2,點(diǎn)P是直線EO上方拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Py軸的平行線交直線EO于點(diǎn)G,作PHEO,垂足為H.設(shè)PH的長為l,點(diǎn)P的橫坐標(biāo)為m,求lm的函數(shù)關(guān)系式(不必寫出m的取值范圍),并求出l的最大值;

(3)如果點(diǎn)N是拋物線對(duì)稱軸上的一點(diǎn),拋物線上是否存在點(diǎn)M,使得以M,A,C,N為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案