如圖,正方形ABCD的邊長為2cm,在對稱中心O處有一釘子.動點P,Q同時從點A出發(fā),點P沿A?B?C方向以每秒2cm的速度運動,到點C停止,點Q沿A?D方向以每秒1cm的速度運動,到點D停止.P,Q兩點用一條可伸縮的細橡皮筋連接,設x秒后橡皮筋掃過的面積為ycm2
(1)當0≤x≤1時,求y與x之間的函數(shù)關系式;
(2)當橡皮筋剛好觸及釘子時,求x值;
(3)當1≤x≤2時,求y與x之間的函數(shù)關系式,并寫出橡皮筋從觸及釘子到運動停止時∠POQ的變化范圍;
(4)當0≤x≤2時,請在給出的直角坐標系中畫出y與x之間的函數(shù)圖象.
【答案】分析:(1)當0≤x≤1時,AP=2x,AQ=x,則y=AQ•AP=x2
(2)根據題意,橡皮筋剛好觸及釘子時,橡皮筋掃過的面積正好是正方形的一半由此的求出x的值.
(3)要分兩種情況進行討論,一是橡皮筋剛觸及釘子時及其以前,二是觸及釘子,橡皮筋彎曲后兩種情況.第一種情況,按梯形的面積進行計算.第二種情況要從中間分成兩個梯形,然后按兩個梯形的面積進行計算.
(4)根據(1)(2)(3)中得出的不同x的取值下的y的函數(shù)式畫圖即可.
解答:解:(1)當0≤x≤1時,AP=2x,AQ=x,y=AQ•AP=x2,
即y=x2

(2)當S四邊形ABPQ=S正方形ABCD時,橡皮筋剛好觸及釘子,
BP=2x-2,AQ=x,(2x-2+x)×2=×22,∴x=

(3)當1≤x≤時,AB=2,PB=2x-2,AQ=x,
∴y=×2=3x-2,
即y=3x-2.
作OE⊥AB,E為垂足.
≤x≤2時,
BP=2x-2,AQ=x,OE=1,y=S梯形BEOP+S梯形OEAQ==,
即y=x.(6分)
90°≤∠POQ≤180°.

(4)如圖所示:

點評:本題為運動型綜合題,考查學生綜合運用知識解決問題的綜合能力.運動類題,要以特定靜止狀態(tài),尋找量之間關系
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�