如圖,在半徑為R的⊙O中,度數(shù)分別為36°和108°,弦CD與弦AB長度的差為    (用含有R的代數(shù)式表示).
【答案】分析:解:先作OM⊥AB于M,連接OA,根據(jù)垂徑定理得出AM=BM,∠AOM=18°,求出AB=2AM=2•OA•sin∠AOM,同理得出CD=2Rsin54°,兩者進行相減,再進行整理即可得出答案.
解答:解:作OM⊥AB于M,連接OA,則AM=BM,∠AOM=18°,
AB=2AM=2•OA•sin∠AOM=2Rsin18°,
同理可得:CD=2Rsin54°,
則CD-AB=2Rsin54°-2Rsin18°=2R(sin54°-sin18°)
=4Rcos36°sin18°
=2Rcos36°sin36°÷cos18°
=Rsin72°÷cos18°
=R.
故答案為:R.
點評:此題考查了圓心角、弧、弦的關(guān)系、圓周角定理等,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓中作一內(nèi)接△ABC,使BC邊上的高AD=h(定值),這樣的三角形可作出無數(shù)個,但AB•AC為定值,其值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓內(nèi)作一個內(nèi)接正方形,然后作這個正方形的內(nèi)切圓,又在這個內(nèi)切圓中作內(nèi)接正方形,依此作到第n個內(nèi)切圓,它的半徑是(  )
A、(
2
2
)
n
R
B、(
1
2
)
n
R
C、(
1
2
)
n-1
R
D、(
2
2
)
n-1
R

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在半徑為2的⊙O中,弦AB的長為2
3
,則∠AOB=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,在半徑為5的⊙O中,AB、CD是互相垂直的兩條弦,垂足為P,且AB=CD=8,則OP的長為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•上海模擬)如圖,在半徑為1的扇形AOB中,∠AOB=90°,點P是
AB
上的一個動點(不與點A、B重合),PC⊥OA,PD⊥OB,垂足分別為點C、D,點E、F、G、H分別是線段OD、PD、PC、OC的中點,EF與DG相交于點M,HG與EC相交于點N,聯(lián)結(jié)MN.如果設(shè)OC=x,MN=y,那么y關(guān)于x的函數(shù)解析式及函數(shù)定義域為
y=-
1
3
x2+
4
9
(o<x<1)
y=-
1
3
x2+
4
9
(o<x<1)

查看答案和解析>>

同步練習冊答案